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Abstract: Medx-Vision is an Al-powered mobile
application that simplifies chest disease detection by
analyzing X-ray images and providing easy-to-understand
diagnostic results. Using a Convolutional Neural Network
(CNN) trained on the NIH Chest X-ray dataset, the system
identifies conditions like pneumonia and cardiomegaly
with high accuracy. The backend, built with Flask,
preprocesses images and returns predictions with
confidence scores, which are formatted into layman-
friendly messages. The Android app, developed using
Jetpack Compose, enables users to upload or capture
images and view results through a clean, intuitive
interface. Designed for accessibility, Medx-Vision bridges
the gap between complex medical Al and everyday users,
making early diagnosis more available in underserved
areas.
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Nomenclature:

CNNs: Convolutional Neural Networks
Al Artificial Intelligence

NIH: National Institutes of Health
XALI: Explainable Al

I. INTRODUCTION

Medical imaging is one of the most critical tools in

modern healthcare for diagnosing and monitoring diseases.
Among the various imaging modalities, chest X-rays
remain one of the most widely used due to their
availability, cost- effectiveness, and diagnostic value.
However, interpreting chest X-ray images requires highly
trained radiologists, and even then,
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diagnostic errors or delays may occur due to human
limitations, fatigue, or overwhelming workloads. In regions
with limited access to medical professionals, particularly
radiologists, timely and accurate diagnosis becomes even
more challenging.

This has led to a growing interest in developing
automated systems that can assist or supplement human
interpretation, thereby improving diagnostic speed,
consistency, and accuracy.

Recent advances in artificial intelligence (AI) and deep
learning have enabled the development of systems capable
of performing complex tasks, such as image classification
and object detection, with high accuracy. Convolutional
Neural Networks (CNNs), a class of deep learning models,
are especially well-suited for analyzing medical images [9].

By training a CNN on a large dataset of labelled chest X-
rays, the model can learn to recognise various diseases, such
as pneumonia, limitations, fatigue, or overwhelming
workloads. In regions with limited access to medical
professionals, particularly radiologists, timely and accurate
diagnosis becomes even more challenging. This has led to a
growing interest in developing automated systems that can
assist or supplement human interpretation, thereby
improving diagnostic speed, consistency, and accuracy.

Recent advances in artificial intelligence (Al) and deep
learning have enabled the development of systems capable
of performing complex tasks, such as image classification
and object detection, with high accuracy. Convolutional
Neural Networks (CNNs), a class of deep learning models,
are especially well-suited for analyzing medical images. By
training a CNN on a large dataset of labelled chest X-rays,
the model can learn to recognise various diseases, such as
pneumonia, cardiomegaly, and effusion, based on subtle
patterns that may not be visible to the untrained eye.

This project proposes developing an Al-powered mobile
application that enables users to upload or scan chest X-ray
images and receive a diagnostic prediction along with a
confidence score. The goal is to create an intelligent system
that can provide preliminary insights into potential chest
diseases without requiring expert medical knowledge. The
system is built with a complete tech stack, including a
TensorFlow/Keras-based CNN for classification, a Flask
API backend for model inference, and an Android frontend
(built with Jetpack Compose) serving as the user interface.

The CNN model was trained on the publicly available NIH
Chest X-ray dataset, which includes thousands of annotated
X-ray images across multiple disease categories.
Preprocessing steps, including image normalisation,
resizing, and label encoding, were
applied to prepare the dataset
for training. The model
learns from this data to
generalize patterns
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associated with each condition. Once trained, the model is
saved and integrated into a Flask-based backend that
handles image input from the mobile app.

II. LITERATURE REVIEW

With the increasing adoption of artificial intelligence (AI)
and deep learning techniques in healthcare, numerous
studies have demonstrated the potential of machine learning
models, particularly Convolutional Neural Networks
(CNNs), in diagnosing diseases from medical images such
as chest X-rays. The complexity and variability of
radiographic features in chest images make manual
diagnosis time-consuming and error-prone. This has
inspired researchers to develop automated diagnostic
systems to assist radiologists and improve the
efficiency of healthcare delivery.

The National Institutes of Health (NIH) Chest X- ray
dataset introduced by Wang et al. (2017) [1] was a
significant milestone in this domain. The dataset comprises
over 100,000 chest X-ray images labelled across 14 disease
categories, including pneumonia, cardiomegaly,
infiltration, effusion, and others. This dataset has been
widely adopted as a benchmark for training and evaluating
deep learning models for multi- label classification
problems in medical imaging.

Several research efforts have used deep learning and
CNNs on this dataset to achieve high accuracy in disease
prediction. Rajpurkar et al. introduced CheXNet, a 121-layer
DenseNet model trained on the NIH dataset, achieving
performance comparable to that of practising radiologists in
detecting pneumonia. Their work highlighted the capability
of deep models not only to learn subtle features from chest
X-rays but also to perform accurate classification in multi-
label scenarios [10].

Hira et al. (2021) proposed a comparative study using nine
CNN architectures, including AlexNet, GoogleNet, ResNet-
50, and DenseNetl21, to classify chest X-ray images [3].
They achieved up to 99.32% accuracy in binary
classification (COVID-19 vs. normal) and 97.55% in multi-
class classification tasks.

Similarly, Swati Hira et al. explored edge detection and
data augmentation techniques to improve model
generalization. Their model, CODISC-CNN, demonstrated
robust classification across binary and multi-class scenarios,
including distinguishing between COVID-19, bacterial and
viral pneumonia, and healthy lungs. They used image
preprocessing such as resizing and normalization and
applied advanced CNN-based architectures to learn
hierarchical features from X-ray scans.

II1. METHODOLOGY

The methodology for this project involves designing,
training, and deploying a Convolutional Neural Network
(CNN)- based system to detect chest diseases from X-ray
images. The complete workflow is structured into five major
components: data collection and preprocessing, model
architecture design, model training and evaluation, API [6]
development for model deployment, and mobile application
integration. Each phase has been carefully implemented to
ensure the model performs accurately while maintaining a
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user-friendly interface for non-technical users.

A. Dataset Collection and Labelling

The primary dataset used in this project is the NIH Chest
X-ray Dataset, which contains over 100,000 chest X-ray
images of 30,000+ patients, annotated with 14 common
thoracic disease labels, including Pneumonia, Effusion,
Cardiomegaly, Atelectasis, and more. For prototyping and
initial development, a subset of the dataset containing 5,000
images was used to ensure faster iteration and reduce
computational overhead. Each image in the dataset is
associated with a “Finding Labels” column in a CSV file
that contains one or more disease labels. These labels were
preprocessed using factorisation (label encoding) for single-
label classification and, optionally, converted to one-hot-
encoded vectors for multi-class predictions. The image
filenames were used to match corresponding labels during
training.

B. Image Preprocessing

To ensure compatibility with the CNN input layer and to
reduce training complexity, all images were resized to
128x128 pixels. Images were loaded using the Pillow library
and converted to NumPy arrays. Pixel values were
normalized to a 0—1 range by dividing by 255.0. Additional
preprocessing steps included: Removing corrupted or
unreadable images. Mapping labels to consistent formats.
Splitting data into training (80%) and testing (20%) sets
using sklearn’s train_test_split. These steps improved model
stability, reduced memory usage, and ensured consistency
during batch processing.

C. CNN Model Architecture

A custom Convolutional Neural Network (CNN) model
was built using TensorFlow/Keras. The architecture was
designed to strike a balance between simplicity,
computational efficiency, and classification accuracy. The
model's structure included: Input Layer: Accepts
128x128%x3 RGB images. Convolutional Layers: Multiple
Conv2D layers with increasing filters (32, 64, etc.) and
ReLU activation. Max Pooling Layers: To reduce spatial
dimensions and retain essential features. Flatten Layer: To
convert 2D feature maps into 1D vectors. Dense Layers:
Fully connected layers with dropout for regularization.
Output Layer: Softmax activation for multi-class
classification. The model was compiled using the Adam
optimizer and categorical cross-entropy loss, and accuracy
was used as the evaluation metric.

D. Model Training and Evaluation

The model was trained on the preprocessed dataset using a
batch size of 32 and an initial number of 10 epochs for
testing. Training was conducted on both Google Colab
(with GPU acceleration) and a local machine equipped with
an Intel i7 CPU and NVIDIA RTX 3050 GPU for
performance comparison. Overfitting was minimised using
dropout layers and early stopping. Evaluation metrics
included: Training and Validation
Accuracy. Loss  curves.
Confusion Matrix. Class-
wise accuracy reports. The
trained model was saved in
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HDFS5 (.h5) format for deployment.

E. API Development Using Flask

To serve the trained model and make it accessible to the
frontend application, a Flask [4] API was developed. The
API has a single endpoint (/predict) that accepts image files
via POST requests. The received image is processed in real
time: it is resized and normalised and passed through the
loaded model. A prediction is generated along with a
confidence score. The output is returned in JSON format,
which includes the predicted disease and a probability value.
The Flask server can be run locally or hosted using services
like ngrok for testing on physical Android devices [5].

F. Mobile App Integration (Frontend)

An Android application was developed using Jetpack.
Compose and Kotlin. It provides a clean, interactive UI that
lets users capture an X-ray image with the device’s camera.
Upload a photo from local storage. Send the image to the
Flask backend via Retrofit. View the predicted disease and
confidence score. Image files are first compressed and
resized on the client side before being sent, reducing
network load. The app can run on emulators and real
devices. For future versions, support for offline model
inference using TensorFlow Lite can be considered.

G. System Architecture and Workflow

The overall system follows a modular pipeline: User Input
(Image) — Mobile App— Flask API — Model Prediction
— Response (Diagnosis + Confidence) — Display on UI.
This clear separation of frontend and backend ensures
scalability, flexibility for deployment (cloud or local), and
easier maintenance.

IV. SYSTEM ARCHITECTURE

The system architecture of the proposed Al-powered chest
X-ray diagnostic application is designed to offer a seamless,
modular, and efficient pipeline that spans from image
acquisition on a mobile device to disease prediction using a
Convolutional Neural Network (CNN) and the delivery of
results via a user-friendly interface. The architecture follows
a client-server model, where the Android mobile
application serves as the client, and a A Python-based
Flask server (deployed locally or online) serves as the
backend, handling image processing and prediction. This
end-to- end system is built with a focus on accessibility,
accuracy, scalability, and ease of use.

The architecture can be broken down into five key
components:

A. User Interface Layer (Frontend — Android App)

The user interface is developed using Jetpack Compose, a
modern Android toolkit for building native Ul The app is
responsible for interacting with the user and capturing or
selecting X-ray images for analysis. It includes the
following features: Image Capture: Uses the device’s
camera to scan a chest X-ray image. Image Selection:
Allows users to pick an image from the local gallery.
Preview: Displays the selected or captured image to the
user. Request Trigger: Sends the image to the backend via
an API call using Retrofit. Result Display: Receives and
presents the predicted disease name along with the model’s
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confidence score in a readable format.

B. Communication Layer (Retrofit API Client)

To facilitate communication between the mobile frontend
and the backend server, retrofit (a type-safe HTTP client for
Android) [8] is used. It handles multipart HTTP POST
requests by packaging the selected image and sending it to
the Flask API endpoint (/predict). The communication is
asynchronous and secured with standard HTTP protocols.
Error-handling mechanisms are also integrated to handle
connectivity issues, timeouts, and unexpected server
responses.

C. Backend Server (Flask API)

The backend is developed using Flask, a lightweight
Python web framework [2]. Its primary function is to
receive the uploaded image from the client app. Perform
necessary image preprocessing (resizing to 128x128 and
normalisation). Load the trained CNN model from disk (.h5
file). Run the image through the model to generate
predictions. Return a JSON response containing the
predicted label and confidence score. The API server runs
locally during development and testing. It can be deployed
online using tools like ngrok (for tunnel-based access) [11]
or cloud platforms like Heroku [12] or AWS in production
settings. The Flask server ensures that the client is
decoupled from the model logic, allowing independent
scaling and maintenance.

D. Al Model
TensorFlow/Keras)

Layer (CNN Model -

At the core of the system lies the custom- trained CNN
model, which performs the disease classification task. The
model was built with TensorFlow and Keras and trained on
the NIH Chest X-ray dataset. It consists of several
convolutional and pooling layers, followed by dense layers,
and ends with a softmax output layer for multi-class
prediction. Key aspects of the model include: Input Shape:
128x128x3 RGB images. Activation Functions: ReLU and
Softmax. Loss Function: Categorical Cross-Entropy.
Optimizer: Adam. Metrics: Accuracy. Once trained, the
model is saved and loaded into memory at server start-up for
efficient real- time predictions.

E. Data Storage and Management

Although this system does not use a persistent database in
its current form, the data flow is managed as follows: Image
files are temporarily stored in memory or a cache for
preprocessing and then discarded. Model and label
mappings are loaded from disk at runtime. Optional logging
of requests and predictions can be implemented for auditing
and improvement purposes. Future versions of the system
can integrate cloud-based databases (e.g., Firebase,
MongoDB) for user history tracking, authentication, and the
storage of diagnostic records. Here’s how the components
interact: The user opens the Android app and captures or
selects an image. The app sends the image via a POST
request to the Flask API [7]. The
Flask server receives the
image, processes it, and
feeds it into the trained
CNN model. The model
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predicts the most likely disease (e.g., Pneumonia, No
Finding, Effusion) along with a confidence score. The
server responds with the result in JSON format. The
Android app parses the response and displays the result in
an easy-to- understand format. Deployment Options:
Localhost (for development/testing). Ngrok tunnel (for
remote testing on mobile devices). Production deployment
(e.g., AWS, GCP, or Heroku).

V. RESULTS

The system was successfully developed and tested across
various phases, from CNN model training to deployment
through a mobile application integrated with a Flask
backend. The model's performance, accuracy metrics,
prediction capabilities, and real-time testing outcomes are
outlined below.

A. Model Training & Evaluation

The Convolutional Neural Network (CNN) was trained on
a curated subset of the NIH Chest X-ray dataset containing
5,000 labelled images. The dataset included images labelled
for multiple thoracic conditions, including Pneumonia,
Effusion, Cardiomegaly, and No Finding. The model
architecture comprised convolutional and pooling layers,
followed by dense layers with ReLU and softmax
activation.  During  training: Image Input Size:
128x128%3.Batch  Size: 32. Epochs: 10 (with
experimentation up to 100). Loss Function: Categorical
Cross-Entropy Optimiser: Adam. Key evaluation metrics
after 10 epochs: Metric Value. Training Accuracy
~94.6%. Validation Accuracy~90.3%. Training Loss |
Consistently over epochs. Validation Loss Moderate
decrease, no overfitting observed. Final Test Accuracy
~89-91%. Top-1 Prediction Accuracy High (based on label
frequency). The model was further tested using confusion
matrices, per-class accuracy reports, and real image
predictions. Diseases like Pneumonia and Effusion showed
high prediction reliability due to clearer features in the
dataset.

B. Prediction Confidence Output

Each prediction returned two key values: Predicted
Disease (e.g., “Pneumonia”) and Confidence Score (e.g.,
“96.7%”). This helped users understand how confident the
model was in its diagnosis, especially when dealing with
multi-label images or overlapping symptoms.

Predicted: Atelectasis|Cardiomegaly|Consolidation
Confidence: 66.10%

v

=

[Fig.1: Output with Disease Predicted]
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Predicted: No Finding
Confidence: 77.41%

[Fig.2: Output with No Disease Predicted]

Scan a photo using Camera or Gallery

Choose from Gallery

[Fig.3: Home of the App]

C. Flask API Performance

The trained model was deployed using a Flask server that
handled image uploads and inference. API performance was
measured on a local machine (Intel 17, RTX 3050), with an
average response time of 0.8-1.5 seconds per image
(including preprocessing and inference). The API
consistently returned clean JSON responses with minimal
latency, even under multiple requests.

D. Mobile App Testing

The Android application was tested using both Android
Studio emulator and a physical device. The following test
cases were validated: successful capture and upload of X-
ray images using the camera. Image selection from device
gallery. Real-time communication with the Flask APL
Accurate display of prediction and confidence. Friendly
error handling (e.g., API down, no image selected, poor
image quality). The overall user experience was smooth, and
the app remained responsive throughout various edge cases.

E. User-Friendliness of QOutput

The system was designed to display results in layman-
friendly language. Instead of technical probabilities, it
shows: Disease detected: Pneumonia. Confidence: 96.73%.
This helped non- medical users interpret results clearly
without medical jargon.

F. System Integration

The entire workflow was validated: User uploads an image
via app — API receives, and processes — CNN predicts
disease — Result sent back to
user. The real-time loop was
tested under both local
(localhost) and  public
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(ngrok) environments, confirming that the end-to-end
system was functional and stable. Summary of
Achievements. Trained a custom CNN model with ~90%+
accuracy. Built a Flask-based API for real- time predictions.
Developed a fully functional Android app with camera &
upload capability. Achieved successful image-to- prediction
round-trip in ~1-2 seconds. Designed output to be
understandable for general users.

VI. CONCLUSION

The developed system successfully demonstrates the
potential of artificial intelligence in enhancing the medical
imaging workflow. By leveraging a Convolutional Neural
Network (CNN), the application can analyze chest X-ray
images and identify potential abnormalities with high
confidence. The integration of the backend model with a
user-friendly Android application enables quick, easy
scanning, uploading, and receiving results in a layperson-
understandable format. This project shows that Al-powered
models can assist in the early detection of chest diseases
such as Pneumonia, Effusion, and Cardiomegaly. Real-time
predictions and mobile accessibility empower both
healthcare professionals and the general public. Using open
datasets like the NIH Chest X-ray dataset and tools such as
TensorFlow, Flask, and Android Studio makes such a
solution accessible and cost-effective. The system offers a
strong prototype for Al-assisted diagnosis tools and lays the
groundwork for further enhancements, such as multilingual
support, explainable Al (XAI), integration with hospital
databases and real-time deployment using cloud services.
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