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Abstract: Medx-Vision is an AI-powered mobile 

application that simplifies chest disease detection by 

analyzing X-ray images and providing easy-to-understand 

diagnostic results. Using a Convolutional Neural Network 

(CNN) trained on the NIH Chest X-ray dataset, the system 

identifies conditions like pneumonia and cardiomegaly 

with high accuracy. The backend, built with Flask, 

preprocesses images and returns predictions with 

confidence scores, which are formatted into layman-

friendly messages. The Android app, developed using 

Jetpack Compose, enables users to upload or capture 

images and view results through a clean, intuitive 

interface. Designed for accessibility, Medx-Vision bridges 

the gap between complex medical AI and everyday users, 

making early diagnosis more available in underserved 

areas. 

Keyword: Medx-Vision, Artificial Intelligence, 

Convolutional Neural Network (CNN), Diagnosis 

Nomenclature: 
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AI: Artificial Intelligence 
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I. INTRODUCTION

Medical imaging is one of the most critical tools in

modern healthcare for diagnosing and monitoring diseases. 

Among the various imaging modalities, chest X-rays 

remain one of the most widely used due to their 

availability, cost- effectiveness, and diagnostic value. 

However, interpreting chest X-ray images requires highly 

trained radiologists, and even then,  
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diagnostic errors or delays may occur due to human 

limitations, fatigue, or overwhelming workloads. In regions 

with limited access to medical professionals, particularly 

radiologists, timely and accurate diagnosis becomes even 

more challenging.  

This has led to a growing interest in developing 

automated systems that can assist or supplement human 

interpretation, thereby improving diagnostic speed, 

consistency, and accuracy. 

Recent advances in artificial intelligence (AI) and deep 

learning have enabled the development of systems capable 

of performing complex tasks, such as image classification 

and object detection, with high accuracy. Convolutional 

Neural Networks (CNNs), a class of deep learning models, 

are especially well-suited for analyzing medical images [9].  

By training a CNN on a large dataset of labelled chest X-

rays, the model can learn to recognise various diseases, such 

as pneumonia, limitations, fatigue, or overwhelming 

workloads. In regions with limited access to medical 

professionals, particularly radiologists, timely and accurate 

diagnosis becomes even more challenging. This has led to a 

growing interest in developing automated systems that can 

assist or supplement human interpretation, thereby 

improving diagnostic speed, consistency, and accuracy. 

Recent advances in artificial intelligence (AI) and deep 

learning have enabled the development of systems capable 

of performing complex tasks, such as image classification 

and object detection, with high accuracy. Convolutional 

Neural Networks (CNNs), a class of deep learning models, 

are especially well-suited for analyzing medical images. By 

training a CNN on a large dataset of labelled chest X-rays, 

the model can learn to recognise various diseases, such as 

pneumonia, cardiomegaly, and effusion, based on subtle 

patterns that may not be visible to the untrained eye. 

This project proposes developing an AI-powered mobile 

application that enables users to upload or scan chest X-ray 

images and receive a diagnostic prediction along with a 

confidence score. The goal is to create an intelligent system 

that can provide preliminary insights into potential chest 

diseases without requiring expert medical knowledge. The 

system is built with a complete tech stack, including a 

TensorFlow/Keras-based CNN for classification, a Flask 

API backend for model inference, and an Android frontend 

(built with Jetpack Compose) serving as the user interface. 

The CNN model was trained on the publicly available NIH 

Chest X-ray dataset, which includes thousands of annotated 

X-ray images across multiple disease categories.

Preprocessing steps, including image normalisation,

resizing, and label encoding, were

applied to prepare the dataset

for training. The model

learns from this data to

generalize patterns
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associated with each condition. Once trained, the model is 

saved and integrated into a Flask-based backend that 

handles image input from the mobile app. 

II. LITERATURE REVIEW 

With the increasing adoption of artificial intelligence (AI) 

and deep learning techniques in healthcare, numerous 

studies have demonstrated the potential of machine learning 

models, particularly Convolutional Neural Networks 

(CNNs), in diagnosing diseases from medical images such 

as chest X-rays. The complexity and variability of 

radiographic features in chest images make manual 

diagnosis time-consuming and error-prone. This has 

inspired researchers to develop automated diagnostic 

systems to assist radiologists and improve the 

efficiency of healthcare delivery. 

The National Institutes of Health (NIH) Chest X- ray 

dataset introduced by Wang et al. (2017) [1] was a 

significant milestone in this domain. The dataset comprises 

over 100,000 chest X-ray images labelled across 14 disease 

categories, including pneumonia, cardiomegaly, 

infiltration, effusion, and others. This dataset has been 

widely adopted as a benchmark for training and evaluating 

deep learning models for multi- label classification 

problems in medical imaging. 

Several research efforts have used deep learning and 

CNNs on this dataset to achieve high accuracy in disease 

prediction. Rajpurkar et al. introduced CheXNet, a 121-layer 

DenseNet model trained on the NIH dataset, achieving 

performance comparable to that of practising radiologists in 

detecting pneumonia. Their work highlighted the capability 

of deep models not only to learn subtle features from chest 

X-rays but also to perform accurate classification in multi-

label scenarios [10]. 

Hira et al. (2021) proposed a comparative study using nine 

CNN architectures, including AlexNet, GoogleNet, ResNet- 

50, and DenseNet121, to classify chest X-ray images [3]. 

They achieved up to 99.32% accuracy in binary 

classification (COVID-19 vs. normal) and 97.55% in multi-

class classification tasks. 

Similarly, Swati Hira et al. explored edge detection and 

data augmentation techniques to improve model 

generalization. Their model, CODISC-CNN, demonstrated 

robust classification across binary and multi-class scenarios, 

including distinguishing between COVID-19, bacterial and 

viral pneumonia, and healthy lungs. They used image 

preprocessing such as resizing and normalization and 

applied advanced CNN-based architectures to learn 

hierarchical features from X-ray scans. 

III. METHODOLOGY 

The methodology for this project involves designing, 

training, and deploying a Convolutional Neural Network 

(CNN)- based system to detect chest diseases from X-ray 

images. The complete workflow is structured into five major 

components: data collection and preprocessing, model 

architecture design, model training and evaluation, API [6] 

development for model deployment, and mobile application 

integration. Each phase has been carefully implemented to 

ensure the model performs accurately while maintaining a 

user-friendly interface for non-technical users. 

A. Dataset Collection and Labelling 

The primary dataset used in this project is the NIH Chest 

X-ray Dataset, which contains over 100,000 chest X-ray 

images of 30,000+ patients, annotated with 14 common 

thoracic disease labels, including Pneumonia, Effusion, 

Cardiomegaly, Atelectasis, and more. For prototyping and 

initial development, a subset of the dataset containing 5,000 

images was used to ensure faster iteration and reduce 

computational overhead. Each image in the dataset is 

associated with a “Finding Labels” column in a CSV file 

that contains one or more disease labels. These labels were 

preprocessed using factorisation (label encoding) for single-

label classification and, optionally, converted to one-hot-

encoded vectors for multi-class predictions. The image 

filenames were used to match corresponding labels during 

training. 

B. Image Preprocessing 

To ensure compatibility with the CNN input layer and to 

reduce training complexity, all images were resized to 

128×128 pixels. Images were loaded using the Pillow library 

and converted to NumPy arrays. Pixel values were 

normalized to a 0–1 range by dividing by 255.0. Additional 

preprocessing steps included: Removing corrupted or 

unreadable images. Mapping labels to consistent formats. 

Splitting data into training (80%) and testing (20%) sets 

using sklearn’s train_test_split. These steps improved model 

stability, reduced memory usage, and ensured consistency 

during batch processing. 

C. CNN Model Architecture 

A custom Convolutional Neural Network (CNN) model 

was built using TensorFlow/Keras. The architecture was 

designed to strike a balance between simplicity, 

computational efficiency, and classification accuracy. The 

model's structure included: Input Layer: Accepts 

128×128×3 RGB images. Convolutional Layers: Multiple 

Conv2D layers with increasing filters (32, 64, etc.) and 

ReLU activation. Max Pooling Layers: To reduce spatial 

dimensions and retain essential features. Flatten Layer: To 

convert 2D feature maps into 1D vectors. Dense Layers: 

Fully connected layers with dropout for regularization. 

Output Layer: Softmax activation for multi-class 

classification. The model was compiled using the Adam 

optimizer and categorical cross-entropy loss, and accuracy 

was used as the evaluation metric. 

D. Model Training and Evaluation 

The model was trained on the preprocessed dataset using a 

batch size of 32 and an initial number of 10 epochs for 

testing. Training was conducted on both Google Colab 

(with GPU acceleration) and a local machine equipped with 

an Intel i7 CPU and NVIDIA RTX 3050 GPU for 

performance comparison. Overfitting was minimised using 

dropout layers and early stopping. Evaluation metrics 

included: Training and Validation   

Accuracy. Loss curves. 

Confusion Matrix. Class-

wise accuracy reports. The 

trained model was saved in 
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HDF5 (.h5) format for deployment. 

E. API Development Using Flask 

To serve the trained model and make it accessible to the 

frontend application, a Flask [4] API was developed. The 

API has a single endpoint (/predict) that accepts image files 

via POST requests. The received image is processed in real 

time: it is resized and normalised and passed through the 

loaded model. A prediction is generated along with a 

confidence score. The output is returned in JSON format, 

which includes the predicted disease and a probability value. 

The Flask server can be run locally or hosted using services 

like ngrok for testing on physical Android devices [5]. 

F. Mobile App Integration (Frontend) 

An Android application was developed using Jetpack. 

Compose and Kotlin. It provides a clean, interactive UI that 

lets users capture an X-ray image with the device’s camera. 

Upload a photo from local storage. Send the image to the 

Flask backend via Retrofit. View the predicted disease and 

confidence score. Image files are first compressed and 

resized on the client side before being sent, reducing 

network load. The app can run on emulators and real 

devices. For future versions, support for offline model 

inference using TensorFlow Lite can be considered. 

G. System Architecture and Workflow 

The overall system follows a modular pipeline: User Input 

(Image) → Mobile App→ Flask API → Model Prediction 

→ Response (Diagnosis + Confidence) → Display on UI. 

This clear separation of frontend and backend ensures 

scalability, flexibility for deployment (cloud or local), and 

easier maintenance. 

IV. SYSTEM ARCHITECTURE 

The system architecture of the proposed AI-powered chest 

X-ray diagnostic application is designed to offer a seamless, 

modular, and efficient pipeline that spans from image 

acquisition on a mobile device to disease prediction using a 

Convolutional Neural Network (CNN) and the delivery of 

results via a user-friendly interface. The architecture follows 

a client-server model, where the Android mobile 

application serves as the client, and a A Python-based 

Flask server (deployed locally or online) serves as the 

backend, handling image processing and prediction. This 

end-to- end system is built with a focus on accessibility, 

accuracy, scalability, and ease of use. 

The architecture can be broken down into five key 

components: 

A. User Interface Layer (Frontend – Android App) 

The user interface is developed using Jetpack Compose, a 

modern Android toolkit for building native UI. The app is 

responsible for interacting with the user and capturing or 

selecting X-ray images for analysis. It includes the 

following features: Image Capture: Uses the device’s 

camera to scan a chest X-ray image. Image Selection: 

Allows users to pick an image from the local gallery. 

Preview: Displays the selected or captured image to the 

user. Request Trigger: Sends the image to the backend via 

an API call using Retrofit. Result Display: Receives and 

presents the predicted disease name along with the model’s 

confidence score in a readable format. 

B. Communication Layer (Retrofit API Client) 

To facilitate communication between the mobile frontend 

and the backend server, retrofit (a type-safe HTTP client for 

Android) [8] is used. It handles multipart HTTP POST 

requests by packaging the selected image and sending it to 

the Flask API endpoint (/predict). The communication is 

asynchronous and secured with standard HTTP protocols. 

Error-handling mechanisms are also integrated to handle 

connectivity issues, timeouts, and unexpected server 

responses. 

C. Backend Server (Flask API) 

The backend is developed using Flask, a lightweight 

Python web framework [2]. Its primary function is to 

receive the uploaded image from the client app. Perform 

necessary image preprocessing (resizing to 128×128 and 

normalisation). Load the trained CNN model from disk (.h5 

file). Run the image through the model to generate 

predictions. Return a JSON response containing the 

predicted label and confidence score. The API server runs 

locally during development and testing. It can be deployed 

online using tools like ngrok (for tunnel-based access) [11] 

or cloud platforms like Heroku [12] or AWS in production 

settings. The Flask server ensures that the client is 

decoupled from the model logic, allowing independent 

scaling and maintenance. 

D. AI Model Layer (CNN Model – 

TensorFlow/Keras) 

At the core of the system lies the custom- trained CNN 

model, which performs the disease classification task. The 

model was built with TensorFlow and Keras and trained on 

the NIH Chest X-ray dataset. It consists of several 

convolutional and pooling layers, followed by dense layers, 

and ends with a softmax output layer for multi-class 

prediction. Key aspects of the model include: Input Shape: 

128x128x3 RGB images. Activation Functions: ReLU and 

Softmax. Loss Function: Categorical Cross-Entropy. 

Optimizer: Adam. Metrics: Accuracy. Once trained, the 

model is saved and loaded into memory at server start-up for 

efficient real- time predictions. 

E. Data Storage and Management 

Although this system does not use a persistent database in 

its current form, the data flow is managed as follows: Image 

files are temporarily stored in memory or a cache for 

preprocessing and then discarded. Model and label 

mappings are loaded from disk at runtime. Optional logging 

of requests and predictions can be implemented for auditing 

and improvement purposes. Future versions of the system 

can integrate cloud-based databases (e.g., Firebase, 

MongoDB) for user history tracking, authentication, and the 

storage of diagnostic records. Here’s how the components 

interact: The user opens the Android app and captures or 

selects an image. The app sends the image via a POST 

request to the Flask API [7]. The   

Flask server receives the 

image, processes it, and 

feeds it into the trained 

CNN model. The model 
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predicts the most likely disease (e.g., Pneumonia, No 

Finding, Effusion) along with a confidence score. The 

server responds with the result in JSON format. The 

Android app parses the response and displays the result in 

an easy-to- understand format. Deployment Options: 

Localhost (for development/testing). Ngrok tunnel (for 

remote testing on mobile devices). Production deployment 

(e.g., AWS, GCP, or Heroku). 

V. RESULTS 

The system was successfully developed and tested across 

various phases, from CNN model training to deployment 

through a mobile application integrated with a Flask 

backend. The model's performance, accuracy metrics, 

prediction capabilities, and real-time testing outcomes are 

outlined below. 

A. Model Training & Evaluation 

The Convolutional Neural Network (CNN) was trained on 

a curated subset of the NIH Chest X-ray dataset containing 

5,000 labelled images. The dataset included images labelled 

for multiple thoracic conditions, including Pneumonia, 

Effusion, Cardiomegaly, and No Finding. The model 

architecture comprised convolutional and pooling layers, 

followed by dense layers with ReLU and softmax 

activation. During training: Image Input Size: 

128×128×3.Batch Size: 32. Epochs: 10 (with 

experimentation up to 100). Loss Function: Categorical 

Cross-Entropy Optimiser: Adam. Key evaluation metrics 

after 10 epochs: Metric Value. Training Accuracy 

~94.6%. Validation Accuracy~90.3%. Training Loss ↓ 

Consistently over epochs. Validation Loss Moderate 

decrease, no overfitting observed. Final Test Accuracy 

~89–91%. Top-1 Prediction Accuracy High (based on label 

frequency). The model was further tested using confusion 

matrices, per-class accuracy reports, and real image 

predictions. Diseases like Pneumonia and Effusion showed 

high prediction reliability due to clearer features in the 

dataset. 

B. Prediction Confidence Output 

Each prediction returned two key values: Predicted 

Disease (e.g., “Pneumonia”) and Confidence Score (e.g., 

“96.7%”). This helped users understand how confident the 

model was in its diagnosis, especially when dealing with 

multi-label images or overlapping symptoms. 

 

 

[Fig.1: Output with Disease Predicted] 

 

[Fig.2: Output with No Disease Predicted] 

 

[Fig.3: Home of the App] 

C. Flask API Performance 

The trained model was deployed using a Flask server that 

handled image uploads and inference. API performance was 

measured on a local machine (Intel i7, RTX 3050), with an 

average response time of 0.8-1.5 seconds per image 

(including preprocessing and inference). The API 

consistently returned clean JSON responses with minimal 

latency, even under multiple requests. 

D. Mobile App Testing 

The Android application was tested using both Android 

Studio emulator and a physical device. The following test 

cases were validated: successful capture and upload of X-

ray images using the camera. Image selection from device 

gallery. Real-time communication with the Flask API. 

Accurate display of prediction and confidence. Friendly 

error handling (e.g., API down, no image selected, poor 

image quality). The overall user experience was smooth, and 

the app remained responsive throughout various edge cases. 

E. User-Friendliness of Output 

The system was designed to display results in layman-

friendly language. Instead of technical probabilities, it 

shows: Disease detected: Pneumonia. Confidence: 96.73%. 

This helped non- medical users interpret results clearly 

without medical jargon. 

F. System Integration 

The entire workflow was validated: User uploads an image 

via app → API receives, and processes → CNN predicts 

disease → Result sent back to   

user. The real-time loop was 

tested under both local 

(localhost) and public 
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(ngrok) environments, confirming that the end-to-end 

system was functional and stable. Summary of 

Achievements. Trained a custom CNN model with ~90%+ 

accuracy. Built a Flask-based API for real- time predictions. 

Developed a fully functional Android app with camera & 

upload capability. Achieved successful image-to- prediction 

round-trip in ~1–2 seconds. Designed output to be 

understandable for general users. 

VI. CONCLUSION 

The developed system successfully demonstrates the 

potential of artificial intelligence in enhancing the medical 

imaging workflow. By leveraging a Convolutional Neural 

Network (CNN), the application can analyze chest X-ray 

images and identify potential abnormalities with high 

confidence. The integration of the backend model with a 

user-friendly Android application enables quick, easy 

scanning, uploading, and receiving results in a layperson-

understandable format. This project shows that AI-powered 

models can assist in the early detection of chest diseases 

such as Pneumonia, Effusion, and Cardiomegaly. Real-time 

predictions and mobile accessibility empower both 

healthcare professionals and the general public. Using open 

datasets like the NIH Chest X-ray dataset and tools such as 

TensorFlow, Flask, and Android Studio makes such a 

solution accessible and cost-effective. The system offers a 

strong prototype for AI-assisted diagnosis tools and lays the 

groundwork for further enhancements, such as multilingual 

support, explainable AI (XAI), integration with hospital 

databases and real-time deployment using cloud services. 
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