

Big Data Analytics for Women's Healthcare: Insights from Urban and Rural Pathological Data

Adishree A. Kulkarni

Abstract: The fast introduction of big data analytics to healthcare is transforming medical research and clinical practices, especially in the area of women's health. Women in urban and rural areas have unique health needs due to differences in lifestyle, environment, socioeconomic status, and access to health care. The paper aims to discuss pathological samples from women across various environments to determine the differences and commonalities in their health status. Combining electronic health record (EHR) data, imaging data, genomic data, wearable data, and socio-economic data, we will discover patterns that modulate disease risk, disease progression, and drug response. Lifestyle diseases and cancers are common in urban regions as a result of stress and exposure to the environment, and rural women face the challenges of limited access to healthcare, late diagnosis, and poor health literacy. Early disease detection, improved diagnostics, and tailored treatment are among the prospects of applying machine learning and predictive models to large datasets. Nevertheless, some tasks, such as data privacy, inadequate infrastructure in rural areas, and ethics, are essential. This paper demonstrates the potential of big data analytics to close healthcare disparities, facilitate access to justice, and support personalised medicine for women across diverse groups.

Keywords: Big Data Analytics, Women's Healthcare, Pathological Data, Urban and Rural Health, Healthcare Disparities, Predictive Analytics, Machine Learning.

Nomenclature:

EHRs: Electronic Health Records
PCOS: Polycystic Ovary Syndrome
KNN: K-Nearest Neighbor
SVM: Support Vector Machines
AI: Artificial Intelligence
ML: Machine Learning
IoT: Internet of Things

I. INTRODUCTION

One of the most disruptive innovations in healthcare is now considered big data, which enables analysis of enormous amounts of data of various types, including electronic health records (EHRs), medical imaging, genomics, and patient-generated data. Being large in scale, diverse in content, and moving quickly, these datasets offer valuable information that can enhance diagnostic accuracy,

personalised therapy, and interventions at the population level. This has been increased by the digitisation of healthcare systems, which has enabled the storage and analysis of information at a scale never previously achieved. Healthcare for women, in particular, is one area that can be significantly enhanced through the incorporation of big data analytics. Women have their own health issues, such as reproductive problems, hormonal differences, and they are at a higher risk of getting diseases like breast and cervical cancer, cardiovascular diseases, and gynaecological issues [1][5]. Women in urban areas tend to have higher access to healthcare and screening programs, thus getting earlier diagnoses of breast cancer and other conditions. Stress, environmental pollution, and lifestyle, however, are causes of increased risk of chronic illnesses. On the other hand, women living in rural settings have restricted access to health facilities, inadequate health literacy, and socioeconomic factors, which postpone treatment and consequently lead to increased mortality rates [2][4].

The need to address these disparities has been emphasised in various research studies. Indicatively, a survey by Bang et al. [1] indicated a significant prevalence of gynaecological disorders among rural women in India, which is usually increased by poor accessibility to health care services. On the same note, Szubert et al. [2] have shown that health behaviours differ among pregnant women in urban and rural settings, and education and awareness have contributed to this variation in maternal health outcomes. Moreover, educational levels have been reported to positively impact health-seeking behaviour and treatment compliance among women, thereby strengthening the relationship between socio-economic status and health disparities [3]. The gaps can be filled with big data analytics, which can leverage multi-dimensional data to highlight patterns that traditional analysis cannot identify. There is a growing trend to use machine learning and predictive models to estimate disease risks and improve survival estimates for diseases such as breast and cervical cancer [5][6][7]. Such technologies allow healthcare providers to introduce specific interventions, tailor treatment to the individual genetic profile, and allocate resources more efficiently across urban and rural populations.

The paper will focus on the application of big data analytics in women's healthcare, specifically in the analysis of both urban and rural pathological data. Through analysis of these datasets, we will be able to identify differences in health outcomes, discuss risk factors specific to certain populations, and suggest ways to reduce inequalities. This way, the research will emphasise the transformational potential of big data to support fair, evidence-based, and customised healthcare for

Manuscript received on 05 November 2025 | First Revised Manuscript received on 25 November 2025 | Second Revised Manuscript received on 18 December 2025 | Manuscript Accepted on 15 January 2026 | Manuscript published on 30 January 2026.

*Correspondence Author(s)

Adishree A. Kulkarni*, Student, Department of Science, Rajarshi Chhatrapati Shahu Junior College, Nashik (Maharashtra), India. Email ID: aedishree@gmail.com, ORCID ID: [0009-0009-2749-8375](https://orcid.org/0009-0009-2749-8375)

© The Authors. Published by Lattice Science Publication (LSP). This is an [open-access](#) article under the CC-BY-NC-ND license <http://creativecommons.org/licenses/by-nc-nd/4.0/>

women across various settings.

II. RELATED WORK

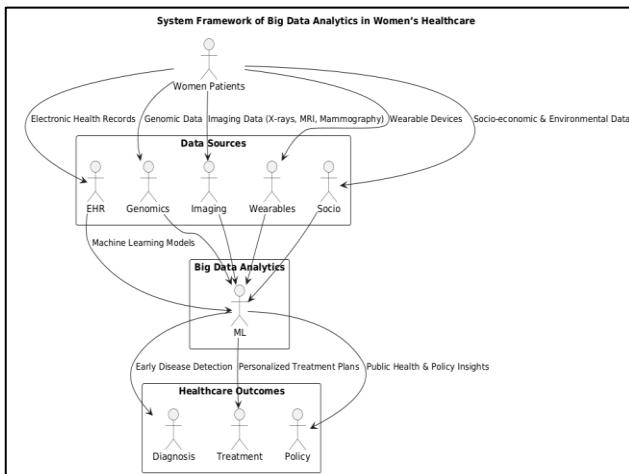
Big data analytics applied in women's healthcare have been informed by many studies investigating health disparities and the roles of socio-economic and environmental factors. The health status of women is not only determined by biological factors but also by access to care, education, and lifestyle. The interpretation of these influences based on data research helps address gaps in healthcare. Among the acute problems of rural communities, a high rate of gynaecological disorders is an outstanding issue. The population-based study carried out among women in rural areas in India showed that over 90 per cent of women studied had one or more sexually transmitted infections or gynaecological diseases, with half of the morbidity associated with genital tract infection [1]. Despite the burden, few women had received any previous gynaecological testing or treatment, highlighting the need to make healthcare more accessible in the near future. The findings presented above suggest the potential of big data to detect previously concealed disease patterns and inform preventive measures.

Cross-country comparisons also emphasise the role of socioeconomic and behavioural factors in the development of maternal and reproductive health. A significant study on urban and rural pregnant women in Poland indicated a difference in the consumption of alcohol and supplements over the length of the study [2]. Rural women were less likely to engage in healthy behaviours, whereas urban women with higher educational attainment were more likely to adopt preventive measures, particularly folic acid supplementation. These discrepancies suggest that knowledge and awareness are very significant in maternal outcomes. Women's education has been proven to have a tremendous effect on health. Educated women will use modern medical services more frequently, comply with treatment instructions, and provide adequate medical care for mothers and children [3]. On the other hand, little literacy and deeply rooted socio-cultural beliefs tend to limit access to early healthcare to women in a cyclical manner, and poor health continues. The need to incorporate socio-economic and educational data in healthcare analytics is supported.

Nutritional inequalities also play an essential role in women's health indicators. A study on the rural aspects of Varanasi, India, found a high prevalence of malnutrition and related health problems associated with poor dietary intake [4]. These results imply that health policies should not rely solely on clinical records or data but should also include environmental and lifestyle determinants of health. Such variables can be better combined into big data frameworks to identify at-risk populations and direct resource allocation. In disease-specific applications, big data and machine learning methods have shown promise for cancer prevention among prevalent cancers among women. In breast cancer, predictive models using big data have demonstrated better performance in pre-diagnosis and classification [5]. In the same vein, machine learning-based systems such as CervyDetect have been developed to identify cervical cancer

by integrating pathological and clinical data [6]. Advanced data analytics have also shown substantial improvements in survival models for predicting outcomes among cervical cancer patients [7]. These discoveries highlight big data's ability to deliver personalised care, increase diagnostic accuracy, and maximise treatment outcomes.

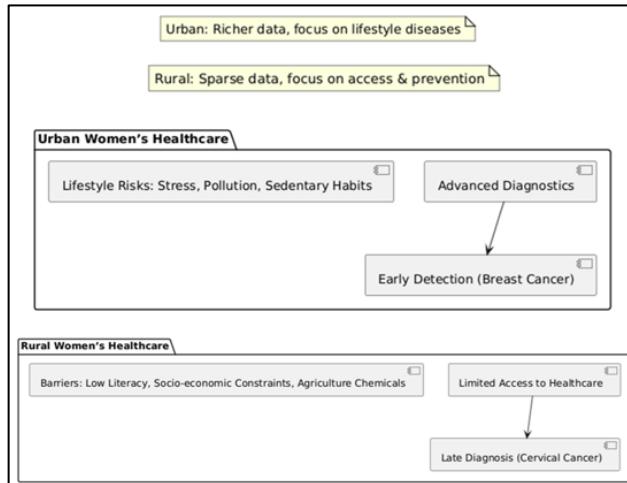
Overall, the literature review identifies three key themes: (1) the persistence of health disparities between rural and urban areas among women; (2) the socioeconomic and educational factors that influence healthcare access and utilization; and (3) the growing potential of big data and machine learning in disease prediction and management. There are still problems with how various datasets may be used, how to provide fair access, and how to apply the findings to a valuable approach to public health, despite significant developments in the use of big data tools in women's healthcare.


III. BIG DATA'S IMPACT ON WOMEN'S HEALTHCARE

Big data is transformative in women's healthcare because it enables the integration of a wide range of data, including electronic health records (EHRs), genomic information, imaging and wearable device data, and socioeconomic data. Taken together, these multidimensional sources provide a holistic picture of women's health across all stages and settings of their lives. Predictive analytics is one of the most essential applications of big data, as it can forecast disease risk and progression. For example, when patterns are reviewed in massive datasets, the early detection of illnesses such as breast cancer, cardiovascular disease, or pregnancy difficulties can be considerably improved [5]. These observations enable medical practitioners to intervene early and implement preventive treatments tailored to an individual's risk profile.

Big data also enables personalised medicine, which tailors' treatment based on genetic predisposition, lifestyle choices, and environmental factors. With genomic data, coupled with clinical and imaging data, one can design more effective and less invasive therapies for women with intricate disorders like ovarian cancer or polycystic ovary syndrome (PCOS) [6]. On the one hand, beyond individual care, big data analytics contributes to improving population health management. Trends in disease incidence and healthcare utilisation can help policymakers allocate resources more efficiently and initiate targeted public health programs. As an example, an intervention in urban areas can aim to prevent lifestyle-related diseases, whereas in rural areas, improving access to healthcare and maternal health literacy can be prioritised [2][4]. Nevertheless, there are specific challenges associated with the adoption of big data in women's healthcare. To be integrated with various data sources, the necessary infrastructure and skills are high, and aspects of the work, such as ethical considerations, including privacy, consent, and algorithmic bias, should be taken into account. No matter the obstacles, big data, as a means to change the state of women's healthcare, has enormous potential, as it provides avenues for

improved diagnostics, equal access, and evidence-based policymaking.


[Fig.1: System Framework of Big Data Analytics in Women's Healthcare]

IV. PATHOLOGICAL DATA URBAN VS RURAL

Diagnosis and management of most diseases that disproportionately affect women rely on pathological data obtained from laboratory tests, tissue samples, genetic profiles, and imaging studies. The examination of such data would help to understand the prevalence, risk factors, and progress and development of health conditions in various populations. Nevertheless, cities and rural areas tend to show remarkable differences in pathologists due to access, environmental, and socioeconomic factors. Women in cities often have access to high-quality diagnostic facilities, including cutting-edge labs, radiology, and specialised services. This enables early detection and treatment of diseases such as breast cancer, cardiac issues, and metabolic disorders [5]. For example, high-risk women are more likely to receive timely interventions in cities with more mammography and genetic screening programs. Meanwhile, women in cities are exposed to risk factors such as pollution, sedentary living, and stress, all of which increase the incidence of cancer and chronic diseases.

In contrast, rural communities are more likely to face systemic healthcare issues. The absence of diagnostic facilities, the use of outmoded equipment, and the dearth of competent medical personnel all make it impossible to collect and analyse pathology data promptly [1][4]. As a result, medical illnesses such as cervical cancer, diabetes, and cardiovascular disorders are frequently discovered later, resulting in poorer outcomes and higher mortality rates. These disparities are exacerbated by socioeconomic factors, with many rural women unable to afford regular tests or preventative treatment [2].

Additionally, there are significant differences in risk variables between rural and urban populations. Women in cities might be more likely to be affected by lifestyle diseases. In contrast, rural women might be exposed to agricultural pollutants, poor diets, and lower health awareness, all of which affect pathology data and health outcomes [4]. These social and environmental aspects underscore the importance of contextualised interventions.

[Fig.2: Comparative Analysis of Rural Vs Urban Pathological Data]

Big data analytics is a good chance to fill these gaps. By combining information from various sources, it is feasible to detect concealed trends in disease occurrence and development. An example of this is the use of predictive models to predict the prevalence of cervical cancer in rural underserved communities and algorithmic machine learning systems, which can be used to screen breast cancer at an earlier stage using imaging data in urban centres [6][7]. These understandings can guide specific population health policies that help ensure interventions are tailored to the population's individual needs. To conclude, the application of big data analytics to pathological data reveals striking differences in the health of urban and rural women. Although in metropolitan regions, there is a high level of diagnostics, and there is a risk of lifestyle-related diseases, in rural areas, women still face barriers to access, as well as the delay of diagnosis. To correct such inequities, the problem must be met with better infrastructure and healthcare literacy, as well as the implementation of data-based approaches to ensure equitable healthcare delivery across regions.

V. APPLICATIONS & CASE STUDIES

The use of big data analytics in women's healthcare has already been demonstrated in both urban and rural settings, where various challenges require a tailored approach. Case studies indicate the potential of using machine learning and predictive models to address region-specific health issues, improving diagnosis and treatment management. Big data has been extensively applied in the management of breast cancer, which is one of the most prevalent cancers that affects women globally in urban settings. Urban hospitals produce large amounts of data through mammograms, biopsies, and genetic tests due to their greater access to diagnostic facilities. K-nearest neighbour (KNN) and support vector machines (SVM) have been used as machine learning algorithms to analyse these data and improve classification accuracy and early diagnosis [5]. The tools will be able to recognise subtle trends in imaging and genomic data that might be missed by traditional approaches, increasing the

likelihood of diagnosing the disease early and significantly improving personalised care. As an example, predictive analytics can classify patients by risk level, which oncologists can use to plan specific treatments and make resource decisions within a metropolitan healthcare system.

Rural populations, on the other hand, experience more challenges with cervical cancer, which is a significant cause of morbidity and mortality among women in the developing regions. Poor awareness, lack of knowledge on screening programs and inadequate access to healthcare lead to late diagnoses. To address this, machine learning-based solutions have been proposed, including CerviDetect, which uses hybrid models that combine neural networks with random forest feature selection methods [6]. These systems will be more accurate at predicting cervical cancer risk by analysing patient data, such as pathological test results and socio-economic indicators. Moreover, more sophisticated algorithms used to predict survival in cervical cancer patients have shown potential to predict outcomes, enabling clinicians to offer more informed care [7]. These examples demonstrate the adaptability of big data techniques in a variety of circumstances. Although cities supply more information to monitor diseases like breast cancer, rural-oriented solutions typically combine smaller datasets with powerful algorithms to compensate for a lack of diagnostic resources. In both cases, data-driven insights are applied to improve the prevention, early detection, and management of patients.

The overarching message of these case studies is that big data analytics can eliminate healthcare disparities by tailoring treatments to the unique characteristics of each environment. In the city, the emphasis can be on the treatment of lifestyle diseases and the use of advanced diagnostics. In contrast, at the country level, the emphasis should be on low-cost screening, educational programs, and predictive methodologies with scalable approaches. All of these tactics demonstrate the potential impact of big data on women's health and your efforts to ensure that technological breakthroughs are accessible to all groups.

VI. CHALLENGES & LIMITATIONS

Although big data analytics has a bright future in improving women's healthcare, several challenges and limitations must be overcome to enable efficient implementation. Such dilemmas cut across technological, infrastructural, socio-cultural and ethical aspects, especially in comparison between urban and rural environments. The quality and accessibility of data are among the leading problems. Urban health systems tend to produce tabular and in-depth data out of electronic health records, imaging systems, and laboratory findings. Conversely, the rural regions are faced with incomplete, inconsistent or dated records as a result of poor infrastructure and lack of trained medical staff [1][4]. Such data gaps may reduce the accuracy of prediction models and limit their use across different populations.

Other constraints preventing the use of big data solutions in rural areas include technological impediments. Modern diagnostic tools, cloud-based data warehousing, and machine learning systems all require reliable internet access

and computational infrastructure, which are sometimes unavailable in resource-constrained contexts [2]. The digital divide between urban and rural healthcare will persist without specific investment, exacerbating health inequities. Cultural and sociological issues complicate matters further. Women do not seek timely healthcare or attend screening programs in rural regions due to stigma, a lack of health literacy, and traditional beliefs that prevent these activities [3] [4]. These obstacles affect data quality and availability, as well as the efficacy of analytics-based treatments.

Finally, there are critical ethical considerations with privacy, consent, and data security. Women's health information is the most sensitive, and its misuse can lead to abuse or exacerbate previously existing discrepancies. To build confidence in the use of big data, it is critical to ensure that ethical norms are followed and appropriate governance practices are implemented. Overall, while big data has immense potential to improve women's healthcare, it is critical to address issues of data quality, infrastructure, cultural factors, and ethics. To address these difficulties, governments, healthcare providers, and technology innovators must work together.

VII. FUTURE DIRECTION

The future direction of big-data analytics in women's healthcare lies in leveraging emerging technologies, improving infrastructure, and establishing policy space that ensures fair access for all populations. The development of artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT) devices will be necessary for providing real-time, actionable insights [5][6] as the volume and complexity of healthcare data grow. The use of AI and ML in predictive modelling of a variety of illnesses, including breast and cervical cancer, is expected to increase the model's ability to diagnose early and more accurately forecast survival. These technologies will also make it easier to develop tailored medicine, which involves analysing genetic, environmental, and lifestyle factors to create a personalised treatment plan [7]. Wearable devices based on IoT can contribute streams of data on women's health parameters, enabling remote monitoring and prevention, particularly during pregnancy and in the treatment of chronic illnesses.

The healthcare gap between rural and urban areas is a significant concern. Infrastructure investments in digital systems, cloud computing systems, and mobile health applications can improve rural populations' access to diagnostic instruments and healthcare data [2][4]. It is also vital to support policies: governments should implement frameworks that ensure secure data interchange while respecting privacy and ethical values. Incentives for implementing big data analytics in clinical practices can help promote its adoption. Researchers, healthcare providers, and policymakers will need to work together to enhance inclusivity and reduce disparities. By integrating technological innovation and approaches to combat disease spread, big data can not only improve disease outcomes but also foster health equity. To sum up, further

progress in AI, ML, and IoT, as well as the development of appropriate policies and infrastructure, will enable the full potential of big data analytics to be reached. Such initiatives will allow healthcare systems to provide personalised, effective, and equitable care to women in both urban and rural contexts.

VIII. CONCLUSION

In the complex realm of women's healthcare, big data analytics has emerged as a revolutionary tool. It provides new possibilities for early diagnosis, tailored treatment, and efficient use of resources by combining various datasets, including pathological, genetic, imaging, and socioeconomic data. The comparative study of urban and rural healthcare indicates that urban women have access to high-quality diagnostics, though their own health is under threat due to lifestyle-associated factors; rural women, by contrast, face access problems, delayed detection and diagnosis, and socio-economic factors [1][2][4]. Big data implementations in breast cancer prediction, in urban regions, and machine learning-driven cervical cancer detection, in rural ones, show how well these technologies can be applied [5][6][7]. Nonetheless, issues related to data quality, infrastructure, cultural factors, and ethical considerations should be resolved to maximise the benefits of analytics-driven healthcare. In the future, new technologies in artificial intelligence, machine learning, and the Internet of Things will help bridge the healthcare divide and reduce disparities, with the help of favourable policies. Conclusively, big data analytics has the potential to advance equity, improve diagnostic accuracy, and provide personalised medicine for women across different settings. It has the potential to improve women's health outcomes worldwide by eliminating existing constraints.

DECLARATION STATEMENT

I must verify the accuracy of the following information as the article's author.

- **Conflicts of Interest/ Competing Interests:** Based on my understanding, this article has no conflicts of interest.
- **Funding Support:** This article has not been funded by any organizations or agencies. This independence ensures that the research is conducted objectively and without external influence.
- **Ethical Approval and Consent to Participate:** The content of this article does not necessitate ethical approval or consent to participate with supporting documentation.
- **Data Access Statement and Material Availability:** The adequate resources of this article are publicly accessible.
- **Author's Contributions:** The authorship of this article is contributed solely by the author.

REFERENCES

1. R. A. Bang, M. Baitule, S. Sarmukaddam, A. T. Bang, Y. Choudhary, and O. Tale, "Community health: High prevalence of gynaecological diseases in rural Indian women," Gadchiroli, India. DOI: [https://doi.org/10.1016/S0140-6736\(89\)91438-4](https://doi.org/10.1016/S0140-6736(89)91438-4)
2. M. Szubert, M. Ilowiecka, J. Wilczynski, P. Bilinski, and C. Wojtyla, "Health-related behaviours of pregnant women residing in urban and

rural areas in Poland," Int. J. Environ. Res. Public Health, vol. 17, no. 12, p. 4395, 2020, DOI: <http://doi.org/10.3390/ijerph17124395>.

3. N. Jaysawal and S. Saha, "Impact of women's education on their health conditions—An overview," Int. J. Adv. Multidiscip. Res., vol. 9, no. 9, 2022, DOI: <https://doi.org/10.22192/ijamr.2022.09.09.007>
4. S. S. Parvati, S. Tiwari, K. Gupta, and K. Saroj, "A study on health and nutritional problems of women in rural community," Int. J. Sci. Dev. Res., vol. 7, no. 4, Apr. 2022. DOI: <https://doi.org/10.1729/Journal.29852>,
5. K. Shaileja and M. Jabbar, "Prediction of breast cancer using big data analytics," Int. J. Eng. Technol., vol. 7, no. 4.6, pp. 223–226, 2018, DOI: <http://doi.org/10.14419/ijet.v7i4.6.20480>.
6. M. Mahmood, M. Rizwan, M. Gregus, and S. Abbas, "Machine learning assisted cervical cancer detection," Front. Public Health, vol. 9, Dec. 2021, DOI: <http://doi.org/10.3389/fpubh.%202021.788376>.
7. M. Rahimi, A. Akbari, F. Asadi, et al., "Cervical cancer survival prediction by machine learning algorithms: A systematic review," BMC Cancer, vol. 23, no. 341, 2023. DOI: <http://doi.org/10.1186/s12885-023-10808-3>.

AUTHOR'S PROFILE

Adishree Ankur Kulkarni, a Class 12th student at Rajarshi Chhatrapati Shahu Junior College, Nashik, is a Passionate Researcher working in the area of Women's Health. Completed Research Project "Baseline Survey of Tribal Women's Health" -sponsored by the Red Cross Society of India in 2025. In 2025, I presented two research papers at international conferences at IIT Mumbai & IIT Ropar.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Lattice Science Publication (LSP)/ journal and/ or the editor(s). The Lattice Science Publication (LSP)/ journal and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.