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Advancing Diagnostic Accuracy in Lung Disease 

Severity Classification Using Multi-Domain 

Features 
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Abstract: Accurate classification of lung diseases is crucial for 

early diagnosis and effective treatment. This study presents an 

optimised classification framework that utilises multi-domain 

feature extraction and a deep neural network (DNN) for 

categorising lung disease severity from CT scan images. The 

dataset collected from a local hospital includes 266 CT scans of 

Lung cancer, COVID-19, and pneumonia, categorized into mild 

(43 images), moderate (82 photos), and severe (141 images) cases. 

To address class imbalance, the synthetic minority oversampling 

technique (SMOTE) was applied, ensuring equal representation 

across categories. A total of 30 multi-domain features were 

extracted using a comprehensive feature extraction methodology 

that combined wavelet packet decomposition (WPD) with 

statistical, texture, shape, edge detection and Grey Level Co-

occurrence Matrix (GLCM) features. These features captured 

diverse spatial and frequency-based characteristics of lung disease 

patterns, enabling robust model input. This study focuses on 

classification based on the severity of patient condition within 

three different classes: Mild, Moderate, and Severe, related to lung 

disease. The classification was performed using a Deep Neural 

Network (DNN) with fine-tuned hyperparameters. The model 

achieved a training accuracy of 95%. The findings underline the 

potential of this approach in improving automated diagnostic 

systems. The extracted features provide a comprehensive 

representation of disease patterns, while the DNN leverages these 

features for precise classification. This methodology offers 

valuable insights for applications in medical imaging. This 

research contributes to the field of medical image analysis by 

integrating robust feature extraction techniques with advanced 

classification models, paving the way for more accurate and 

reliable lung disease diagnosis. 
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FN: False Negative 

SVM: Support Vector Machine 

KNN: K-Nearest Neighbours 

I. INTRODUCTION

Lung diseases, including lung cancer, pneumonia, and

COVID-19, remain significant global health challenges. 

Early diagnosis and precise classification of disease severity 

are crucial for effective treatment and management. 

Computer-aided diagnosis (CAD) systems, utilising 

advanced classification algorithms, have emerged as pivotal 

tools in this domain. These systems utilise machine learning 

and deep learning techniques to analyse CT scans, providing 

consistent and reliable diagnoses. Recent studies have 

demonstrated that combining robust feature extraction [1] 

with optimized classification methods enhances the accuracy 

of automated systems. For instance, [2] emphasized that 

integrating texture and statistical features improved the 

differentiation between mild, moderate, and severe cases. 

Furthermore, the adoption of deep learning models [3], 

particularly convolutional neural networks, has shown 

promise in outperforming traditional classifiers by learning 

intricate patterns in medical images [4]. Despite 

advancements, existing classification models often suffer 

from limitations such as overfitting, sensitivity to imbalanced 

datasets, and inability to capture multi-domain features 

comprehensively. These challenges underscore the need for 

frameworks that integrate diverse feature sets, including 

spatial, frequency, and texture-based attributes, to represent 

the complexity of lung diseases accurately. Moreover, the 

limited dataset sizes in medical imaging studies exacerbate 

these challenges, underscoring the importance of utilising 

techniques such as synthetic data generation and balanced 

datasets to ensure model robustness. This study aims to 

develop and evaluate an optimized classification framework 

for lung disease severity using multi-domain features 

extracted from CT scans. By combining Wavelet Packet 

Decomposition (WPD), statistical, textural, shape, edge 

detection, and GLCM features, we seek to construct a 

comprehensive feature set that enhances classification 

accuracy. A Deep Neural Network (DNN) model is employed 

to evaluate the classification 

performance.  

A comprehensive review 

of research papers 

highlights the progress and 
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gaps in lung disease classification techniques (Sawant & 

Sreemathy, 2022) [1]. This paper reviews various texture 

feature extraction techniques applied to chest CT images for 

the detection and classification of pulmonary diseases. It 

highlights traditional and advanced texture-based descriptors 

and discusses their effectiveness across diagnostic systems. 

Dharmalingam & Kumar (2022) [2] The authors propose a 

hybrid feature selection model combining statistical and 

heuristic methods to enhance lung disorder classification. The 

study emphasizes increased accuracy and robustness of 

machine learning classifiers through optimal feature 

selection. 

Goyal & Singh (2023) [3] This study compares machine 

learning and deep learning approaches for classifying 

pneumonia and COVID-19 from chest images. It concludes 

that a deep understanding, particularly with CNNs, achieves 

higher precision and better generalisation performance. 

Bourouis et al. (2020) [4] This review explores hybrid 

approaches for medical image analysis, focusing on 

combining traditional image processing with intelligent 

algorithms. It outlines current challenges and suggests future 

directions for improving diagnostic accuracy. 

Ali et al. (2024) [5] The authors introduce a wavelet 

transform-based deep learning framework for lung cancer 

detection. Their method leverages multi-resolution analysis 

and CNN architectures to improve feature representation and 

classification results. 

Karthika, Rajaguru, & Nair (2024) [6] This study 

introduces a statistical framework combining wavelet feature 

extraction and bio-inspired optimisation for lung cancer 

prognosis. The approach enhances classification performance 

by selecting the most discriminative features from CT 

images. 

Saihood, Karshenas, & Nilchi (2022) [7] The authors 

propose a deep fusion technique using gray level co-

occurrence matrices (GLCM) for lung nodule classification. 

The model improves diagnostic precision by integrating 

multiple texture descriptors into a deep learning framework. 

Koshta et al. (2024) [8] This paper presents a Fourier 

decomposition-based method for the automated classification 

of healthy, COPD, and asthma conditions using single-

channel lung sounds. The system demonstrates high 

accuracy, offering a non-invasive diagnostic solution. 

Abdulazeez, Zeebaree, & Abdulqader (2020) [9] A 

comprehensive review of wavelet transform applications in 

medical imaging is provided, covering its roles in noise 

reduction, compression, and feature extraction. The paper 

highlights the use of wavelet transforms in enhancing image 

analysis tasks. 

Serte, Dirik, & Al-Turjman (2022) [10] The study evaluates 

several deep learning models for detecting COVID-19 from 

chest X-ray images. It highlights model performance in real-

world datasets and discusses challenges in deploying AI-

based detection tools in clinical settings. 

Mahmood & Ahmed (2022) [11] This paper presents an 

enhanced CNN architecture designed for automatic 

classification of lung nodules. The proposed model 

outperforms existing architectures by improving accuracy 

and reducing false positives, showcasing its clinical relevance 

in early lung cancer detection. 

Kaur, Goyal, & Dogra (2023) [12] The authors develop a 

hybrid feature-based model combining handcrafted and deep 

learning features for computer-aided diagnosis of lung 

cancer. Their approach improves the robustness and accuracy 

of lung cancer detection systems using CT images. 

Piffer et al. (2024) [13] This systematic review addresses 

the challenge of limited data in medical image classification 

and explores AI-based strategies to overcome it. Techniques 

like data augmentation, transfer learning, and synthetic data 

generation are discussed in depth. 

Chamseddine et al. (2022) [14] The paper focuses on 

managing class imbalance in COVID-19 chest X-ray datasets 

using SMOTE and weighted loss functions. These techniques 

significantly enhance the performance of deep learning 

models in detecting underrepresented cases of COVID-19. 

Koetzier et al. (2024) [15] This paper discusses the 

generation of synthetic medical imaging data to augment 

training datasets for deep learning models. It emphasizes 

techniques like GANs and highlights their potential to 

address data scarcity while ensuring patient privacy. 

Ali et al. (2021) [16] The authors propose a method 

combining deep feature selection with decision-level fusion 

for lung nodule classification. Their approach improves 

diagnostic performance by integrating diverse features and 

optimizing classifier decisions. 

Krstinić et al. (2020) [17] This work explores performance 

evaluation for multi-label classifiers using confusion 

matrices. It provides a structured framework for assessing 

classification metrics, especially relevant for medical 

imaging tasks involving multiple disease labels. 

Carrington et al. (2021) [18] The study introduces Deep 

ROC analysis and advocates for AUC as a balanced average 

accuracy metric. It offers insights for improving model 

selection and interpretability in deep learning applications 

within the healthcare sector. 

Al-qaness et al. (2024) [19] This comprehensive survey 

reviews deep learning methods applied to chest X-ray images 

for detecting various lung diseases. It covers a wide range of 

architectures, preprocessing techniques, and challenges in 

real-world implementation. 

Karalis (2024) [20] The paper discusses how artificial 

intelligence is being integrated into clinical practice, 

highlighting its benefits, limitations, and ethical 

considerations. It emphasizes the importance of aligning AI 

tools with clinical workflows for effective adoption. 

These studies collectively highlight the potential of 

combining diverse feature extraction techniques with 

optimised classification models to enhance the diagnosis of 

lung diseases. 

The paper is structured as follows:  Section 2 discusses the 

materials and methods, including the dataset, feature 

extraction techniques, classification models and evaluation 

matrices. Section 3 presents the results, focusing on model 

performance metrics and visualisations. Section 4 provides a 

detailed discussion, including insights, challenges, and 

comparisons with existing techniques. Section 5- concludes 

the study, summarizing the   

findings and suggesting 

directions for future work. 
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II. METHODOLOGY 

A.  Dataset Description 

The dataset for this study comprises CT scan images of 266 

subjects diagnosed with lung cancer, COVID-19, and 

pneumonia collected from MGM Medical College and 

Hospital, Aurangabad, Maharashtra. 

The CT images in the dataset were categorised into three 

severity levels based on diagnostic hypotheses, which were 

verified with doctors. The Mild category consisted of 43 

images, where a single mass was observed in the scan. The 

Moderate category included 82 images, characterized by the 

presence of a mass with nodular involvement. The Severe 

category comprised 141 images, where the mass was 

accompanied by metabolic syndrome (METS). 

Due to the dataset's imbalance, the Synthetic Minority 

Oversampling Technique (SMOTE) was applied to generate 

additional samples, thereby ensuring an equal distribution 

across all three categories. As a result, the dataset was 

expanded to a total of 426 images, with each severity level 

having the same number of samples, thereby improving the 

robustness of the classification model. 

B. Preprocessing Steps 

The preprocessing steps involved several techniques to 

standardise and enhance the quality of the images before they 

were used for classification. Resizing was performed to 

ensure that all photos had uniform dimensions, providing a 

consistent input size for the model. Normalization was 

applied to adjust the intensity values, ensuring uniform 

contrast and brightness across the dataset, which helped in 

improving feature extraction and model performance. To 

further enhance image quality, noise reduction was 

implemented using a Gaussian filter, which effectively 

minimized noise while preserving essential image details. 

Following preprocessing, the dataset was divided into three 

subsets: 70% for training, 15% for validation, and 15% for 

testing, ensuring a structured approach to model evaluation. 

The balanced dataset, obtained after applying augmentation 

techniques, was then used for multiclass classification of 

Mild, Moderate, and Severe cases. This prepared dataset 

served as the input for the classification models, facilitating a 

robust and reliable assessment of lung disease severity. 

C.  Features Used for Classification 

In this study, a total of 30 features were extracted from lung 

disease images to analyze texture, shape, and edge 

characteristics. These features are divided into two main 

categories: Wavelet Packet Decomposition (WPD) features 

and complementary features.  The Wavelet Packet 

Decomposition (WPD) feature consists of 12 distinct 

attributes that capture detailed frequency and spatial 

information. These features are derived from various 

decomposition pathways, including horizontal, vertical, 

diagonal, and approximation directions at multiple levels. By 

breaking down lung tissue images into finer components, 

WPD features provide insights into subtle variations in 

texture. These features are crucial for detecting slight changes 

in lung tissue, rendering them highly valuable for disease 

classification. Complementary Features consist of 18 

attributes, which are further divided into statistical, texture, 

shape, edge detection, and Grey Level Co-occurrence Matrix 

(GLCM) features. Statistical Features such as skewness and 

kurtosis describe the distribution of pixel intensities. 

Skewness quantifies asymmetry in pixel values, while 

kurtosis measures the peakedness of the intensity distribution. 

Skewness is mathematically defined as: 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =
∑(𝑥𝑖 − 𝜇)3

𝑛. 𝜎3
  …   (1) 

 

where 𝜇 The mean and standard deviation (σ) are used to 

describe the data.  

Kurtosis given by: 

 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =
∑(𝑥𝑖−𝜇)4

𝑛⋅𝜎4 − 3  …   (2)  

 

Texture features include Run-Length Grey Level 

Nonuniformity (RLGLN) and Neighbour Texture Mean 

(NTM). RLGLN highlights non-uniformity in intensity 

distribution along image gradients, expressed as: 

 

𝑅𝐿𝐺𝐿𝑁(𝑋) = ∑(𝑟𝑖,𝑗 − 𝜇𝑟)
2

  …   (3) 

 

Where 𝑟𝑖,𝑗represents the run length and 𝜇𝑟 It is the average 

run length. NTM, on the other hand, represents the mean 

intensity of neighbouring pixels and is given by: 

 

𝑁𝑇𝑀(𝑋) =
∑ 𝑥𝑖,𝑗

𝑛 × 𝑚
  …   (4) 

 

Shape features, such as compactness, centroid, and 

perimeter, focus on the geometric properties of lung tissues. 

Compactness is calculated as: 

 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
4𝜋 × 𝐴

𝑃2
  …   (5) 

 

Where A is the area and P is the perimeter. These shape 

features provide a structural understanding of lung 

abnormalities. 

Edge detection features, such as Canny and Sobel edges, 

identify boundaries between tissue regions by detecting 

gradients and transitions. Canny edge detection works by 

computing gradients using the convolution of the image with 

Gaussian filters, and the Sobel operator uses approximations 

of derivatives to find edges. Finally, GLCM features, such as 

correlation and dissimilarity, analyse the relationships 

between neighbouring pixels to quantify texture patterns. 

Correlation measures the linear relationship between pixel 

pairs, while dissimilarity quantifies differences in intensity 

values between pairs. Together, these features offer a 

comprehensive framework for the detailed analysis and 

classification of lung tissue abnormalities, enhancing the 

model’s ability to distinguish between different severities of 

lung diseases. 

III. CLASSIFICATION MODEL 

The deep neural network (DNN) model presented in this 

study is designed to classify  

lung disease severity into 

three distinct categories: 

Mild, Moderate, and Severe. 
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By leveraging advanced deep learning techniques, including 

dense layers, activation functions, regularisation methods, 

and optimization strategies, the model aims to achieve high 

accuracy and robustness in classification. 

A. Model Architecture 

The model begins with an input layer, which receives data 

with a dimensionality defined by X_train, corresponding to 

the number of features extracted from the lung images. This 

input layer serves as the initial representation of the features 

before they are passed through multiple dense layers for 

feature extraction and refinement. The hidden layers of the 

model consist of multiple densely connected layers, each 

progressively refining the feature extraction process. The first 

hidden layer contains 256 neurons with a ReLU activation 

function, capturing complex patterns from the input data. To 

enhance stability and convergence, batch normalization is 

applied to normalize the layer outputs. Additionally, a 

dropout rate of 30% is introduced to regularize the model, 

preventing overfitting by randomly deactivating neurons 

during training. 

The second hidden layer reduces the complexity while 

maintaining significant feature representations by employing 

128 neurons with ReLU activation. Similar to the first layer, 

batch normalization is applied for output stabilization, and 

dropout is used to enhance generalization. The third hidden 

layer further refines feature extraction with 64 neurons, 

maintaining the same regularization techniques to ensure the 

model remains stable and avoids overfitting. The fourth and 

final dense hidden layer consists of 32 neurons, serving as the 

last stage of feature refinement before classification. 

The output layer of the model comprises three neurons, 

each corresponding to one of the three categories of lung 

disease severity. A soft max activation function is employed, 

ensuring that the output represents probability distributions 

across the three classes. The softmax function converts raw 

model outputs into probabilities, where the sum of all class 

probabilities equals 1. 

i. Activation Functions 

Activation functions play a crucial role in learning complex 

patterns. The model primarily employs the Rectified Linear 

Unit (ReLU) activation function in the hidden layers, which 

is defined as: 

 

𝑅𝑒𝐿𝑈(𝑥) = (0, 𝑥)  …   (6)  
 

ReLU introduces non-linearity, enabling the model to learn 

intricate patterns while mitigating the vanishing gradient 

problem. For the output layer, the softmax activation function 

is utilized, which is mathematically defined as: 

 

𝑃(𝑥) =
𝑒𝑧𝑘

∑ 𝑒𝑧𝑗𝐶
𝑗=1

  …   (7) 

 

Where 𝑧𝑘 represents the linear output for the class 𝑘. This 

function ensures that the predicted probabilities sum to one, 

facilitating multi-class classification. 

ii. Loss Function and Optimization 

For training, the model utilises sparse categorical cross-

entropy as the loss function, which is particularly suitable for 

multi-class classification. It is given by: 

 

𝐿 = −
1

𝑁
∑𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝𝑖,𝑦𝑖

)

𝑁

𝑖=1

  …   (8)  

 

Where 𝑝𝑖,𝑦𝑖
 represents the predicted probability for the 

actual class 𝑦𝑖   of the  𝑖𝑡ℎ sample. This loss function 

effectively quantifies the difference between predicted and 

actual class probabilities. 

To optimise the learning process, the model utilises the 

Adam optimizer, which combines the advantages of 

momentum and RMS Prop for adaptive weight updates. The 

update rule for Adam is: 

 

𝜃𝑡+1̂ = 𝜃𝑡 −
𝜂 ⋅ 𝑚𝑡

√𝑣𝑡 + 𝜖
  …   (9) 

 

Where  𝑚𝑡 and 𝑣𝑡 The moving averages of the first and 

second moments of the gradients, and 𝜂 Represents the 

dynamically adjusted learning rate. This optimization 

technique ensures efficient convergence while adapting the 

learning rate based on gradient information. 

iii. Regularization Techniques 

To enhance generalization and mitigate overfitting, the 

model incorporates batch normalisation and dropout as 

regularisation strategies. Batch normalization is applied after 

each dense layer to normalise outputs and stabilise the 

learning process, reducing internal covariate shifts. Dropout 

is implemented with a 30% dropout rate, which randomly 

deactivates neurons during training, preventing over-reliance 

on specific features and improving model robustness. 

iv. Learning Rate Adjustment 

The learning rate is dynamically adjusted during training 

using Reduce LR on Plateau, which reduces the learning rate 

by a factor of 0.5 when the validation loss stagnates for 10 

consecutive epochs. Additionally, Early Stopping is 

employed to halt training if the validation loss does not 

improve for 20 straight epochs, thereby preventing 

unnecessary computations and minimising the risk of 

overfitting. 

v. Training Parameters 

The model is trained for a maximum of 2000 epochs, 

ensuring sufficient iterations for convergence while 

leveraging early stopping to terminate training when 

performance plateaus. A batch size of 32 is used to maintain 

a balance between computational efficiency and effective 

model convergence. 

B. Evaluation Metrics 

In the context of evaluating a classification model for lung 

disease severity, several key metrics are utilized to assess the 

model’s performance. These metrics include accuracy, 

precision, recall, F1-score, and  

the receiver operating 

characteristic (ROC) curve. 

Accuracy measures the 

proportion of correctly 
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predicted instances out of the total cases. It provides a simple  

and intuitive understanding of how well the model performs. 

However, it may not capture performance equally well across 

all classes, especially when dealing with imbalanced datasets. 

Precision is defined as the ratio of accurate optimistic 

predictions to the sum of accurate positive and false 

optimistic predictions. It reflects how accurately the model 

identifies positive instances. Recall (sensitivity) measures the 

model’s ability to identify all positive cases correctly. It is the 

ratio of true positives to the sum of true positives and false 

negatives. High recall indicates the model’s ability to capture 

as many positive cases as possible, which is crucial in medical 

diagnostics. F1-score is the harmonic mean of precision and 

recall, providing a balanced metric where both precision and 

recall contribute equally. It is beneficial in scenarios where 

there is an uneven class distribution. ROC Curve plots the 

actual positive rate (sensitivity) against the false positive rate 

(specificity) at various thresholds, offering a graphical 

representation of the model’s performance across different 

classifications. The area under the ROC Curve (AUC-ROC) 

quantifies the model’s ability to distinguish between classes. 

These metrics, when used together, provide a comprehensive 

evaluation of the model’s performance in classifying lung 

disease severity, offering insights into both individual metrics 

and their combined impact on the model’s overall 

effectiveness. 

i. Confusion Matrix 

The confusion matrix is a vital tool for understanding the 

performance of a classification model, providing a 

breakdown of true positives, false positives, true negatives, 

and false negatives. 

True Positives (TP) represent the number of correctly 

predicted instances of the positive class. For lung disease 

classification, this corresponds to correctly identifying severe 

cases of lung disease. False positives (FP) are instances that 

are incorrectly predicted as positive, meaning non-severe 

cases of lung disease. True Negatives (TN) indicate correct 

prediction of the negative class, i.e., correctly identifying 

mild or moderate cases. False Negative (FN) represent cases 

where severe instances are missed by the model, indicating a 

model’s inability to capture positive cases. 

For these values, metrics like precision, recall, and F1-score 

are derived. The confusion matrix provides a comprehensive 

view of how the model handles different classes, thus 

enabling detailed performance evaluation. For example, a 

high number of false negatives indicates a lack of sensitivity, 

while a high number of false positives could indicate low 

precision. Analysing the confusion matrix helps in adjusting 

thresholds and improving model performance, ensuring a 

more accurate classification of lung disease severity levels. 

IV. RESULT 

A. Evaluation of Model Performance 

To evaluate the performance of the classification model, 

which is developed to assess lung disease severity across 

three datasets: training, validation, and testing. The data was 

split into 70% for training, 15% for validation, and 15% for 

testing, ensuring that the model was trained on a substantial 

sample while leaving sufficient data for unbiased validation 

and testing. The model’s performance is evaluated using key 

metrics such as accuracy, precision, recall and F1-score, 

along with an analysis of the confusion Matrix. These 

matrices provide a comprehensive understanding of the 

model’s ability to classify disease severity into three 

categories: Mild, Moderate, and Severe. The confusion 

matrix was analysed to extract True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN) 

rates for each dataset, enabling a deeper understanding of the 

model's behaviour. 

i. Training set Performance 

The training set results demonstrate the model’s strong 

ability to classify the severity of lung disease accurately. With 

an overall accuracy of approximately 95%, the model shows 

near-perfect classification across all three classes. Precision, 

recall and F1-scores for each class are consistently high, 

reflecting the model’s strong performance. 

The confusion matrix for the training set reveals minimal 

misclassifications. For instance, Mild cases were rarely 

misclassified as Moderate or severe and the same trend was 

observed for other classes. The balance between precision 

(0.94-0.97) and recall (0.94-0.96) indicates that the model 

effectively identifies actual positive cases while minimizing 

false positives and false negatives. This strong performance 

in the training set establishes a solid foundation for 

generalization to unseen data. 

ii. Validation Set Performance 

The validation set results provide an unbiased evaluation of 

the model’s ability to generalize to new data. The model 

achieved an accuracy of approximately 90%, which is slightly 

lower than the accuracy of the training set, as expected. 

Precision and recall remained high for mild and severe 

classes, but moderate showed a slight decrease in recall, 

which affected its F1-score. The confusion matrix for the 

validation set highlights some misclassification in the 

moderate category, where a few moderate cases were 

identified as mild. This misclassification explains the reduced 

recall for the moderate class. Despite these challenges, the 

severe class maintained excellent performance, with 

precision and recall exceeding 0.95. The validation results 

demonstrate the model’s ability to generalise effectively, with 

only minor performance trade-offs. 

iii. Test set Performance 

The test set results confirm the model’s robustness and 

ability to handle unseen data. An overall accuracy of 

approximately 92% was achieved, closely matching the 

validation performance. Precision and recall for severe cases 

were consistently high, showcasing the model’s ability to 

identify critical cases of lung disease severity with 

confidence. The confusion matrix for the test set indicates 

minimal misclassification. A few mild cases were 

misclassified as severe, and some moderate cases were 

misclassified as mild. However, these misclassifications were 

infrequent and did not significantly impact overall 

performance. The precision, recall and F1-score for all 

classes remained strong, 

particularly for severe cases, 

which achieved an F1-score 

of 0.90. 
 

https://doi.org/10.54105/ijpmh.D1078.05050725
https://doi.org/10.54105/ijpmh.D1078.05050725
http://www.ijpmh.latticescipub.com/


 

Advancing Diagnostic Accuracy in Lung Disease Severity Classification Using Multi-Domain Features 

 

                                                     13 

Published By: 
Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijpmh.D107805040525 

DOI: 10.54105/ijpmh.D1078.05050725 

Journal Website: www.ijpmh.latticescipub.com  

[Fig.1: Confusion Matrix Across Training, Validation, and Testing Datasets]

B. Accuracy, Precision, Recall, and F1-Score Analysis 

Accuracy is a key metric that summarises the proportion of 

correctly classified instances across all classes. The training 

set achieved the highest accuracy of 95%, reflecting the 

model’s strong performance on the data it was trained on. The 

validation set accuracy dropped slightly to 90%, while the test 

set achieved an accuracy of 92%. These results indicate a 

good balance between fitting the training data and 

generalising to new datasets. 

 

 

 [Fig.2: Accuracy Comparison Across Training, 

Validation, and Testing Datasets] 

Precision, recall, and F1-score provide a detailed view of 

the model’s performance in distinguishing between classes. 

These metrics are vital for imbalanced datasets or scenarios 

where certain misclassifications carry more significant 

consequences (e.g., misclassification of severe cases). 

i. Training Set 

All three metrics were consistently high across classes, with 

precision ranging from 0.94 to 0.97 and recall from 0.94 to 

0.96. The F1 scores demonstrated the model’s balanced 

performance in identifying actual positive cases while 

minimising false positives and false negatives. 

ii. Validation Set 

Precision and recall remained high for Mild and severe 

classes, while the moderate class experienced a slight drop in 

recall, affecting its F1-score. This reflects a slight trade-off in 

performance when generalising to unseen data. 

iii. Test Set 

Results were comparable to those of the validation set, with 

a slight improvement in the precision of the moderate class. 

Severe cases consistently performed well across all metrics, 

highlighting the model’s reliability in detecting critical cases. 

 

 

[Fig.3: Precision, Recall, and F1-Score Comparison Across Datasets]

C.  Radar Chart Analysis 

A radar chart offers a visual representation of the model’s 

performance across precision, recall, and F1-score for each 

class and dataset. 

The training set chart shows a uniformly high matrix for all 

classes, emphasizing the model’s strong performance on the 

training data. In the validation set, the moderate class exhibits 

a slight decrease in recall, while the other classes maintain 

high values across all metrics. 

The Test set results closely.   

Resemble the training set, with   

only minor variations, 

demonstrating the model’s 

https://doi.org/10.54105/ijpmh.D1078.05050725
https://doi.org/10.54105/ijpmh.D1078.05050725
http://www.ijpmh.latticescipub.com/


International Journal of Preventive Medicine and Health (IJPMH) 

ISSN: 2582-7588 (Online), Volume-5 Issue-5, July 2025 

                                                     14 

Published By: 
Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijpmh.D107805040525 

DOI: 10.54105/ijpmh.D1078.05050725 

Journal Website: www.ijpmh.latticescipub.com  

consistency across the dataset. 

 

 
[Fig 4: Radar Chart of Precision, Recall, and F1-Score 

for All Classes] 

D. ROC Curve Analysis 

The ROC curve evaluates the model’s ability to distinguish 

between classes, with the Area Under the Curve (AUROC) 

quantifying this ability. Higher AUROC values indicate 

better discriminatory power. 

i. Training Set 

AUROC values were near perfect, with mild (0.99), 

moderate (0.97), and severe (0.99), reflecting excellent 

performance 

ii. Validation Set 

Mild achieved a perfect AUROC (1.00), while moderate 

and severe maintained high values of 0.98 and 1.00, 

respectively. 

iii. Test Set 

AUROC values were slightly lower but still strong-mild 

(0.97), moderate (0.99) and severe (0.95). The high AUROC 

values across all datasets highlight the model’s effectiveness 

in distinguishing between severity levels, even under varying 

conditions. 

 

 

[Fig 5: ROC Curve Comparison for Training, Validation, and Testing Datasets]

In addition to evaluating our proposed model, we conducted 

a comparative analysis with several traditional machine 

learning algorithms, including decision Trees, Random 

Forests, support vector machines (SVM), naïve Bayes, and 

K-nearest neighbours (KNN). During this analysis, we 

observed that many of these models exhibited signs of 

overfitting, especially when trained on the same dataset. This 

overfitting tendency suggests that these traditional algorithms 

struggled to generalise effectively to unseen data, further 

highlighting the robustness and superior generalisation 

capability of our approach. 

V. DISCUSSION 

The results of the lung disease severity classification model 

demonstrate robust performance across training, validation 

and testing datasets. Emphasizing its capability to generalize 

well to unseen data. Despite the relatively small dataset used, 

the model consistently achieved high accuracy, precision, 

recall, and F1-scores, confirming its reliability in 

distinguishing between Mild, Moderate, and severe cases. 

The training set, achieving 95% accuracy, reflects the 

model’s strong learning from the available data, with 

uniformly high performance across all metrics. This indicates 

a well-optimized model that effectively minimizes 

misclassification while accurately identifying the actual 

disease severity levels. The validation set, with an accuracy 

of 90%, highlights the model's ability to generalize. A slight 

decrease in recall for the Moderate class affected its F1-score, 

but overall performance remained robust, with Severe cases 

demonstrating excellent classification. The test set confirmed 

the model’s reliability, achieving 92% accuracy, with 

substantial precision and recall, particularly for Severe cases, 

which consistently scored above 90%. 

One of the model’s key strengths is its ability to maintain 

high performance despite the small dataset. This is 

particularly noteworthy in medical applications, where 

acquiring large, annotated datasets is often a challenging task. 

These high AUROC values across all datasets, exceeding 

0.95 for most classes, further underscore the model’s strong 

discriminative capability. These results suggest that the 

model is effective not only in learning from the training data 

but also in distinguishing between severity levels in real-

world scenarios. 

However, the Moderate class exhibited slightly lower recall  

during validation and testing, indicating room for 

improvement in identifying these cases. This could be 

addressed by incorporating data augmentation or rebalancing 

techniques to mitigate potential class imbalance. Despite this, 

the model consistently excelled.   

In classifying severe cases, 

which is crucial for clinical 

decision-making, it is 
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essential to ensure that the most urgent cases are accurately 

identified and prioritised. 

Overall, the model demonstrates a reliable and efficient 

approach to classifying the severity of lung disease. Its 

performance across key matrices, coupled with its ability to 

generalize well, highlights its potential as a valuable tool in 

aiding clinical diagnosis and treatment planning. Further 

refinement through advanced techniques could enhance its 

capabilities, particularly for challenging cases, making it an 

even more robust solution for medical imaging analysis.  

A. Strengths of the Model 

The following are the strengths, limitations, and 

implications of the model’s performance –  

High Overall Accuracy: Across all datasets (training, 

validation, and test), the model achieved high overall 

accuracy, with values consistently above 90%. Specifically, 

the training set attained an accuracy of approximately 95%, 

the validation set around 90%, and the test set approximately 

92%. This demonstrates the model’s robustness in 

distinguishing between different levels of lung disease 

severity, even with slight variations in data distribution across 

datasets. 

Balanced Precision and Recall: The classification reports 

indicate that the precision and recall values were balanced 

across Mild, Moderate, and Severe classes. For instance, the 

F1-scores were above 0.90 in most cases, highlighting the 

model’s ability to maintain a good balance between capturing 

positive cases (recall) and minimizing false positives 

(precision). Particularly in the Severe class, the model 

demonstrated excellent performance, with both precision and 

recall approaching 1.0, as evident in the confusion matrices 

for all sets. 

Consistent Performance for Severe Cases: The Severe class 

consistently demonstrated strong results across all sets, with 

high precision, recall, and F-1 scores. This indicates that the 

model is particularly effective at accurately identifying cases 

of severe lung disease, which is crucial for medical diagnosis 

and treatment.  

Effectiveness of SMOTE in addressing Class Imbalance: 

The dataset was augmented using the Synthetic Minority 

Oversampling Technique (SMOTE), which contributed to 

improved model performance by ensuring that each category 

had a balanced number of samples. This approach helped 

reduce the impact of class imbalance, resulting in more 

reliable predictions. 

High Performance with Small Datasets: Another significant 

strength of the model is its ability to achieve high 

performance even with relatively small datasets. Despite 

having limited data, the model produced impressive results, 

demonstrating its capability to extract meaningful features 

and perform well in classifying lung disease severity levels. 

B. Limitations and Areas for Improvement 

i. Performance Drop in Validation Set 

While the training set showed the highest accuracy and 

balanced metrics, the validation set displayed a slight 

reduction in performance, especially for Moderate cases. The 

precision and recall for the Moderate class were lower, 

reflecting the model’s challenge in accurately distinguishing 

Moderate cases. Further optimization, such as fine-tuning the 

classification thresholds or incorporating additional features, 

could help improve this aspect. 

Impact of False Positives and False Negatives: Although 

the overall performance was strong, the confusion matrices 

indicate the presence of both false positives (FP) and false 

negatives (FN). For instance, in the training set, Moderate and 

Severe classes showed higher false positives, indicating 

potential misclassification in complex regions of lung tissue. 

Similarly, false negatives highlight instances where severe 

cases were misclassified into less severe categories, 

emphasizing the need for more refined feature extraction and 

model interpretation.  

Generalisation Across Diverse Datasets: Although the 

model performed well across the training and test sets, the 

slight decrease in performance for the validation set suggests 

a need for improved generalisation capabilities. This issue 

could be addressed by ensuring that the validation set is more 

representative of real-world data or by employing techniques 

such as cross-validation for a more comprehensive 

evaluation.  

Implications for Medical Diagnostics: The model’s ability 

to distinguish between different severity levels of lung 

disease has a significant impact on medical diagnostics. By 

improving the precision and recall, particularly for Moderate 

cases, healthcare professionals can benefit from accurate 

disease classification, leading to better management and 

treatment outcomes for patients. Additionally, the use of 

machine learning techniques such as SMOTE helps enhance 

the model’s ability to handle imbalanced datasets, ensuring a 

more equitable diagnostic tool. In conclusion, while the lung 

disease severity classification model demonstrates strong 

performance, ongoing refinement and optimisation are 

necessary to address its limitations, particularly in 

distinguishing Between Moderate cases. Continuous 

advancements in feature extraction methods and model 

evaluation will enhance the model’s ability to deliver 

accurate and reliable diagnostic insights across varying 

degrees of lung disease severity.  

VI. CONCLUSION 

The classification model developed for assessing lung 

disease severity demonstrates robust and reliable 

performance across training, validation, and testing datasets. 

With consistently high accuracy, precision, recall, and F1 

Scores, the model effectively distinguishes between Mild, 

Moderate, and severe cases, making it a valuable tool for 

medical diagnostics. The use of advanced techniques, such as 

SMOTE, for handling class imbalance and efficient feature 

extraction, significantly contributed to its success, 

particularly in achieving high performance despite the 

challenges posed by relatively small datasets. The model’s 

generalisation capability was validated through its strong 

performance on unseen data, as evidenced by its stable 

metrics across both the 

validation and testing 

datasets. In contrast, the 

traditional machine learning 
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algorithms, such as Decision Trees, Random Forest, SVM, 

Naive Bayes, and KNN, were found to be prone to overfitting, 

further underscoring the efficacy of the proposed approach. 

However, a slight drop in recall for Moderate cases highlights 

an area for improvement. Future work could involve fine-

tuning hyperparameters, incorporating data augmentation, 

and exploring ensemble techniques to enhance the model’s 

ability to classify Moderate cases accurately while 

maintaining its strengths in identifying Severe cases. Overall, 

the proposed model provides a reliable and efficient solution 

for classifying lung disease severity, with significant 

potential to support clinical decision-making and enhance 

outcomes. With further refinements, it could serve as a robust 

tool in medical imaging analysis, paving the way for more 

accurate and accessible healthcare technologies. 
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