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Survival Model of Cervical Cancer Patients using 

the 3-Parameter Weibull Distribution Model 

Hassan Swedy Lunku, Ismail Juma Kaudunde, Kidney Chillingo 

Abstract: This study aimed to evaluate a parametric survival 

model for cervical cancer patients treated with ORCI, and a case 

study was conducted to describe the model. The survey of survival 

times of cervical cancer patients may help reduce cervical cancer 

outcomes. Data on socio-demographic characteristics, 

reproductive status, stages, treatment, and follow-up of the 

treatment, abstracted from medical files, were considered in model 

development. The primary objective of this study was to analyse 

cervical cancer survival times from the diagnosis period using a 

three-parameter Weibull distribution model. The analysis was 

performed using the open-source statistical software R and 

Minitab. The three-parameter Weibull distribution is highly 

flexible for fitting random data; moreover, it exhibits strong 

adaptability to various types of probability distributions. When the 

three parameters are well chosen, it can be equal to or approximate 

some other statistical distribution. However, the three parameters 

were estimated to utilize the Weibull model successfully. The 

distribution of survival times of cervical cancer patients, as 

analysed, follows the three-parameter Weibull distribution, with 

required test statistics including the Anderson-Darling significant 

value and standard probability plots. The use of other parametric 

distribution models, such as the Gamma, three-parameter Gamma, 

and Weibull distributions, which encompass various types of 

hazard functions, is recommended for future studies. 

Key terms: 3-Parameter Weibull Distribution Model, Parametric 

Model, Survival Times, Cervical Cancer 

Abbreviations:  

ACS: American Cancer Society 

LN: Lymph Node 

MLE: Maximum Likelihood Estimation 

AIC: Akaike Information Criterion 

DFR: Decrease in Failure Rate 

RSS: Residual Sum of Squares 

I. INTRODUCTION

2017 WHO reports cancer as the leading cause of death in

economically developed countries and the second globally, 

where cancer disease killed almost 9.6 million in 2018, 

approximately 70% of deaths from cancer occurred in low- 
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and middle-income countries and globally, about 1 in 6 

deaths is due to cancer, and is expected to increase to 11.5 

million in 2030 (WHO, 2007 [21], 2013) [22]. Every year in 

developing countries, at least 7 million people die of cancer, 

more than HIV/AIDS, malaria, and tuberculosis combined. In 

developing countries, the burden of cancer increases due to 

the adoption of Western lifestyles and an increase in the 

number of older adults (WHO, 2008 [25], 2010 [23]). Poor 

cancer survival in developing countries is attributed to 

patients’ late diagnosis, usually at an advanced or late stage, 

and limited access to timely and standard treatment. 

According to the GLOBOCAN (2012) [28], respectively, an 

estimated 14.1 million and 8.2 million of new cases of cancer 

and deaths due to cancer occurred in 2012 and the estimation 

of 5 years prevalent cases showed that there were 32.5 million 

alive who had diagnosed with cancer during the previous 5 

years (Ferlay at al, 2014; Swaminathan and 

Sankaranarayanan, 2011) [18]. 

Cervical cancer is a cancer that starts in the cervix, part of 

the woman's reproductive system, which is the lower part of 

the uterus (womb). The cervical cancer stages are categorised 

into four; stage I is when there is a small amount of tumor 

present that has not spread to a lymph node (LN), stage II 

when the cancer spreads beyond the cervix and uterus but not 

the pelvic wall or lower part of the vagina, stage III when the 

cancer grows to the lower part of the vagina and pelvic wall 

and stage IV which is the most advanced stage when cancer 

spread to bladder, rectum or other areas of the body (Plummer 

et al, 2016) [29]. Invasive cervical cancer, which consists of 

stage IB and stage IIA, is one of the most successfully 

treatable cancers when detected early through regular 

screening, and its treatments include chemo-radiotherapy 

given at the same time, while surgery was included for the 

late stage of the disease (Swaminathan et al, 2002) [17].   

The most common cause of cervical cancer is human 

papillomavirus (HPV) infection, and risk factors such as 

many sexual partners and engaging in early sexual contact, 

having a first full-term pregnancy before age 17, long-term 

use of birth control drugs, smoking, and alcohol consumption 

(Kalbfleish and Prentice, 2002) [9]. Few women with HPV 

infection progress to a cancer diagnosis, even though HPV 

infection is the primary cause of cervical cancer. 90% of 

women diagnosed with cervical cancer survive after the first 

year of diagnosis, according to the American Cancer Society 

(ACS).  

In statistics, a parametric model refers to a family of 

distributions that can be described using a finite number of 

parameters, and these parameters are typically combined to 

form a single-dimensional parameter vector (Yang et  

al., 2019) [30]. These models 

incorporate various 

techniques for modelling 

and analysing different 

variables when the focus is 
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on the relationship between the covariates and the survival 

times of the available survival data, considering the 

distribution (Harrel, 2001) [6]. In this study, interval 

censoring was employed to estimate the survival and failure 

rate using a 3-parameter Weibull distribution model, and the 

estimation method used was Maximum Likelihood 

Estimation (MLE). Parametric models are of interest to many 

statistical researchers due to their flexibility and variety in 

function and performance; widely used survival analysis 

models such as non-parametric model (Kaplan-Meier), semi-

parametric models (Cox (1972, 1975) [4] proportional hazard 

model) and parametric models (Exponential, Weibull, 

Lognormal, Gamma) are often reviewed in this regard to 

estimate the survival of cervical cancer patients and 

prognostic factors (Lee and Wang, 2003 [11]; Schafer, 2002 

[14]; Walter and Samuel, 2004) [20].  

II. METHODS AND MODELS 

A. Study Design, Sampling Procedure, and Sample Size 

Retrospective review of female patients diagnosed with 

proven cervical cancer treated at ORCI and the available 

information abstracted using Kobo toolbox, from medical 

files from January 2014 to December 2015, and followed up 

to December 2017. The sample size of 161 cervical cancer 

patients was estimated by using the following criteria: test 

survival rate of 70%, anticipated survival rate of 80%, 5% 

significance level, 95% confidence level, and 90% power of 

the test using the following formulae for two-tailed 

n={
𝑧1−𝛼/2√𝑃0(1− 𝑃0)+ 𝑧1−𝛽√𝑃𝑎(1− 𝑃𝑎)

(𝑃0− 𝑃𝑎)
}

2

(Lwanga and 

Lemeshow, 1991) [13]. 

B. Study Models 

i. Survival Functions and Estimation Method: The Weibull 

Function 

A more complex but often more realistic model for survival 

is given by the Weibull function by the formulae: S (t) = exp 

(-λtγ), where survival time, t ≥ 0, scale and shape parameters 

are estimated, denoted as λ > 0, γ > 0 (Weibull, 1951 [27]; 

Woolson, 1981 [24]; Walter and Samuel, 2004). The 

exponential survival function is a special case of the Weibull 

distribution with a parameter equal to 1, γ = 1. The hazard 

function is given by h(t) = λγt^ (γ-1). It increases as t 

increases if γ > 1 and decreases as t increases if 0 < γ < 1, and 

thus the different values of γ will reveal the nature of the 

distribution (Collet, 2003) [2]. The non-zero shift (Threshold) 

Weibull distribution has three parameters, and its probability 

density function is given by 

 

𝑓(𝑥 ∖ 𝛾, 𝛽, 𝛼) =  𝛾𝛽−𝛾(𝑥 − 𝛼)𝛾−1exp (− (
𝑥 − 𝛼

𝛽
)

𝛾

) 

 

Where β>0 is the scale parameter, α is the shift parameter, 

which is also a lower bound, and γ>0 is the shape parameter 

responsible for the skewness of the distribution. Basic 

statistics of the distribution are given as the Mean of the 

distribution, 𝐸(𝑥) =  𝛼 +  𝛽Γ (1 +
1

𝛾
) 

Variance of the distribution, 𝑉(𝑥) =  𝛽2 (Γ (1 +
2

𝛾
) −

 [Γ(1 + 1/𝛾]2) 

Fisher skew, 𝑆𝑘(𝑥) =  
[Γ(1+1/𝛾]3−3Γ(1+

1

𝛾
)Γ(1+

2

𝛾
)+ Γ(1+

3

𝛾
)

(Γ(1+
2

𝛾
)− [Γ(1+1/𝛾]2)

3/2   

 

Where ℾ represents the Gamma function, its shape varies 

from hyper exponential when γ<1 to nearly symmetrical 

when 𝛾 ≈3.6 and when γ→ ∞ to a negatively skewed 

distribution. The best method to estimate the parameters of 3-

parameter Weibull distribution is Maximum Likelihood 

Estimation (MLE) method, however, its application is 

problematic to Weibull distribution due to the following 

reasons: the distribution must satisfy the regularity conditions 

and Weibull distribution does not due to the domain of the 

random variable depends on the lower position of the lower 

bound, MLE solutions are biased and it is not known by what 

amount, and MLE solutions are not available in a direct form 

for two of three parameters (Yang et al, 2019). The likelihood 

function of the 3-parameter Weibull distribution for a sample 

of size n is given by 

𝐿(𝛾, 𝛽, 𝛼 𝑋⁄ ) =  ∏ 𝑓(𝑥𝑖 𝛾⁄ , 𝛽, 𝛼)

𝑛

𝑖=1

 

 

=  ∏ 𝛾𝛽−𝛾(𝑥𝑖 − 𝛼)𝛾−1exp (− (
𝑥𝑖 − 𝛼

𝛽
)

𝛾

)

𝑛

𝑖=1

 

 

Log-likelihood of the function simplified to 

 

log (𝐿(𝛾, 𝛽, 𝛼 𝑋⁄ ))= −𝑛𝛾 log(𝛽) +  𝑛𝑙𝑜𝑔(𝛾) + (𝛾 −
1) ∑ log(𝑥𝑖 −  𝛼)𝑛

𝑖=1 − 𝛽−𝛾 ∑ (𝑥𝑖 −  𝛼)𝛾𝑛
𝑖=1  

 

Maximizing the equation by computing the derivative 

concerning the scale parameter β equaling zero, and the 

parameter estimated given by  

𝛽 =  √
1

𝑛
∑(𝑥𝑖 −  𝛼)𝛾

𝑛

𝑖=1

𝛾

 

And the derivative of the log-likelihood function 

concerning γ, replace 𝛽−𝛾 with 1/ 
1

𝑛
∑ (𝑥𝑖 −  𝛼)𝛾𝑛

𝑖=1  and 

dividing by n yields 

1

𝛾
+

1

𝑛
∑ log(𝑥𝑖 − 𝛼)

𝑛

𝑖=1

−
∑ log (𝑥𝑖 − 𝛼)1+𝛾𝑛

𝑖=1

∑ (𝑥𝑖 − 𝛼)𝛾𝑛
𝑖=1

= 0 

Similarly, for α, we get 

1

𝑛
∑

1

𝑥𝑖 − 𝛼

𝑛

𝑖=1

𝑥 
∑ (𝑥𝑖 − 𝛼)𝛾𝑛

𝑖=1

∑ (𝑥𝑖 − 𝛼)𝛾−1𝑛
𝑖=1

− 
𝛾

𝛾 − 1
= 0 

One way to estimate γ and α is to square the equations and 

search for the minimum, so that the complete MLE solution 

is given by {𝛾,̂ �̂�}𝑀𝐿𝐸 which satisfies the following two 

constraints 
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𝑀𝑖𝑛
𝛾, 𝛼

 (
1

𝛾
+

1

𝑛
∑ log(𝑥𝑖 − 𝛼)

𝑛

𝑖=1

−  
∑ log(𝑥𝑖 − 𝛼)1+𝛾𝑛

𝑖=1

∑ (𝑥𝑖 − 𝛼)𝛾𝑛
𝑖=1

)

2

 

 

𝑀𝑖𝑛
𝛾, 𝛼

 (
1

𝑛
∑

1

𝑥𝑖 − 𝛼

𝑛

𝑖=1

𝑥 
∑ (𝑥𝑖 − 𝛼)𝛾𝑛

𝑖=1

∑ (𝑥𝑖 − 𝛼)𝛾−1𝑛
𝑖=1

−
𝛾

𝛾 − 1
)2 

 

And by �̂�𝑀𝐿𝐸 =  √
1

𝑛
∑ (𝑥𝑖 − 𝛼)𝛾𝑛

𝑖=1

𝛾

 

ii. Weibull Regression Model 

Models assume that the patient's survival time has a 

continuous probability Weibull distribution with probability 

distribution function given by the following formulae.  
 

f (t/ z) = 
𝛼

exp(𝛽 𝑧)
(

𝑡

exp(𝛽 𝑧)
)𝛼−1exp (−

𝑡

exp (𝛽 𝑧)
)𝛼, t > 0, α > 0 

 

The following formulae can express the hazard function of 

the Weibull regression model. 
 

h (t/ z) =
𝛼

exp (𝛽 𝑧)
(

𝑡

exp (𝛽 𝑧)
)𝛼−1 

 

With the survival function given by the following formula 
 

S (t/ z) = exp (−
𝑡

exp (𝛽 𝑧)
)𝛼 

 

The estimation of the parameter with the maximum 

likelihood function of the following formulae 

 

L (β, t, z) = 

∏ {
𝛼𝑡𝛼−1

[exp (𝛽 𝑧)]𝛼 exp (
𝑡

exp (𝛽 𝑧)
)𝛼} {exp (

𝑡

exp(𝛽 𝑧)
)𝛼}𝑛

𝑖=1  

 

The log of the Weibull hazard is a linear function of log 

time with constant (p log λ + log p) and slope (p – 1). The risk 

is thus rising if p > 1, constant if p = 1, follows the 

exponential, and declining if p < 1 to produce a bathtub curve 

(Anderen et al, 1993 [1]; Cox, 1972, 1975 [3]; Lee and Wang, 

2003). The Weibull is also related to the extreme-value 

distribution, T ~W (λ; p) if and only if Y = log-T = α + σW; 

where W has the extreme value distribution, α = -log λ, and 

the surviving probability is given as, p = 1/σ where σ is the 

estimated parameter of the distribution (Theaune and 

Schoenfeld, 1982 [15]; Sharma, 1996 [16]; Gambach, 2001) 

[19]. 

iii. Akaike Information Criterion (AIC) 

AIC is a measure of selecting a model from a set of different 

models, where smaller AICS indicate a better fit of the model, 

and estimates the quality of each model relative to each of the 

other models (Zhou, 2000 [26]; Leung et al, 1997 [12]; 

Harrel, 2001). AIC is given by -2log(likelihood) + 2k, where 

k is the number of parameters in the model, and for this study, 

k=3. AIC can also be calculated using residual sum of squares 

(RSS) from the regression AIC = nlog(nRSS) + 2k, where n 

is the number of observations (Everitt and Horton, 2005 [5]; 

Hosmer and Lemeshow, 1999) [7]; Izerman and Tran, 1990) 

[8].  

iv. Log-Likelihood Value 

The estimated parameters of the three parametric models 

will be calculated by using maximum likelihood functions, 

and the selection of the best fit depends on the likelihood 

values of the observed data under the three parametric models 

(Kardaum, 1993) [10]. The function given by log L (θ; y) 

=∑ log 𝑓𝑖(𝑦𝑖 ;  𝜃) ni =1. The model that yields the highest 

likelihood value will provide the best fit. 

III. RESULTS 

A. Parametric Distributions 

i. Exponential Function 

The simplest function was used to describe survival with 

one parameter; therefore, the approximated hazard rate 

remains a constant of 0.0048, with mean and median survival 

times of 205.368 and 142.351 days, respectively, as shown in 

Figure 1. The estimated mean parameter is 205.368 days (SE 

= 33.3152, and 95% CI of 149.434 and 282.239, 

respectively). Log-Likelihood = -240.343 and Anderson-

Darling (adjusted) Goodness-of-Fit of 0.837.  
 

 
[Fig.1: Exponential Hazard and Survival Function] 

ii. Weibull Function 

More realistic but complex model for survival was given by 

Weibull where there was a gradual decrease in failure rate 

(DFR) as days of survival time increased with mean survival 

time of 206.08 days, median survival time 136.071 days and 

respective estimated shape and scale parameters of 

0.9433±0.1267 and 200.683±36.0983 (95% lower limit of 

0.7249 and 141.059, upper limit 1.2274 and 285.511). Log-

Likelihood = -240.246 and Anderson-Darling Goodness-of-

fit 0.827. As shown in Figure 2,  

the hazard rate decreases and 

remains constant at a 

specific rate. 
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[Fig.2: Weibull Hazard Function and Survival Plot] 

iii. Logistic Function 

The logistic distribution is among the class of parametric 

survival models where the hazard rate increases; as a life 

testing model, it has its standing as an increasing failure rate 

model. The two-parameter logistic function was fitted with 

estimated location and scale parameters of 182.951 and 

101.621, respectively (the respective standard errors are 

28.7899 and 13.7572, with 95% lower limits of 126.524 and 

77.9378, and upper limits of 239.379 and 132.5). The mean 

and median survival times were 182.951 days with a standard 

deviation of the survival time of 184.320 days. As shown in 

Figure 3, the hazard rate increases and remains constant when 

the rate reaches above 0.008. 

 

 
[Fig.3: Logistic Hazard and Survival Plot] 

iv. Gamma Distribution and Generalized Gamma Function 

The gamma distribution with parameters λ and k, denoted 

T(λ; k), has density:𝑓(𝑡) =  
λ(λt)k−1e−λt

𝑇(𝑘)
 and survivor 

function: S(t) = 1- Ik(λt) and Ik(x) is the incomplete gamma 

function, defined as:  Ik(x) =  ∫
λ𝑘−1𝑒−𝑥𝑑𝑥

Γ(𝑘)

𝑥

0
. Table 1 presents 

the results related to this function, estimating the shape 

parameter k = 0.8261 and the rate parameter as 0.0007. There 

is no explicit formula for the hazard, but it can be computed 

easily as the ratio of the density to the survivor function: h(t) 

= f(t) /S (t).  

Table-I: Gamma Distribution Estimate 

 Estimate 95% Lower 95% Upper Standard Error 

Shape 0.826141 0.609608 1.119587 0.128117 

Rate 0.000701 0.000337 0.001457 0.000262 

 

The gamma hazard increases monotonically if k > 1, from 

a value of 0 at the origin to a maximum of λ, λ is constant if 

k = 1 converts to an exponential distribution, decreases 

monotonically if k < 1, from ∞ at the origin to an asymptotic 

value of λ as shown in the Figure 4 follows a bath tub curve. 

Log-likelihood and AIC were respectively -298.8456 and 

601.6911 at 2 degrees of freedom. 

 

 
[Fig.4: Gamma Distribution, Survival, and Hazard Rate]  

As introduced by Stacy and depicted in Figure 5, the 

generalised gamma distribution 

presents a flexible family 

with varying shapes and 

hazard functions, which are 
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often suitable for modelling survival data. It is a three-

parameter distribution with respective estimated scale, shape, 

and location values presented as μ, σ, and Q, with values of 

7.0848, 0.9826, and 1.2763, respectively, as shown in Table 

2. The log-likelihood and AIC were -298.8052 and 603.6105, 

respectively, at 3 degrees of freedom. 

f(t; θ) = 
𝑘 (𝑘−2)(𝑘−2)(𝜆𝑡)

(𝑘−2)
𝑘
𝜎 exp [−𝑘−2(𝜆𝑡)

𝑘
𝜎]

[Γ(𝑘−2)𝜎𝑡]
 

Table-II: Generalized Gamma Distribution Estimates 

 Estimates 95% Lower 95% Upper Standard Error 

Mu 7.0848 6.5935 7.5761 0.2506 

Sigma 0.9826 0.4266 2.2631 0.4183 

Q 1.2763 -0.0568 2.6093 0.6802 

 
[Fig.5: Generalized Gamma Distribution, Survival, and 

Hazard] 

B. Goodness-of-fit Test 

The hypotheses for the Anderson-Darling test were: H0: The 

data follow a specified distribution VS, H1: The data do not 

follow a specified distribution. From the Goodness-of-fit, 

presented in Table 3, the 3-parameter Gamma distribution 

had a small adjusted Anderson-Darling value of 0.504, while 

the 3-parameter Weibull had a small AD value of 0.596 with 

a p-value of 0.128; hence, the data fit well.  

Table-III: Goodness-of-fit Test 

Distribution Anderson-Darling p-value 

Normal 6.363 <0.005 

3-parameter lognormal 1.865 * 

2-parameter Exponential 0.895 0.147 

3-parameter Weibull 0.596 0.128 

Smallest Extreme value 15.634 <0.010 

Largest extreme value 3.108 <0.010 

3-parameter Gamma 0.504 * 

Logistic 4.581 <0.005 

3-parameter Loglogistic 2.322 * 

 

Probability plots are a great way to visually identify the 

distribution that survival data follow. If the data points follow 

a straight line, the distribution is considered to be a good fit. 

Figure 6 shows a 3-parameter Weibull distribution in the 

probability plot for survival times. The distribution is a good 

fit for the data among the distributions, as the points fall 

closely along the fitted distribution line and the confidence 

bound lines. 

 

 
[Fig.6: Three-Parameter Weibull Probability Plot]  

Since the probability plot, Table 4 presents ML estimates of 

the distribution parameters, AD and p-value indicate a 3-

parameter, Weibull is a good fit of the survival time of 

cervical cancer with shape parameter 0.93695, scale 

225.23005, and threshold of -1.02393 as shown by the 

maximum likelihood estimates of the distribution parameter 

table below. For 3-parameter distributions, only a low value 

indicates that adding the third parameter is a significant 

improvement over the 2-parameter version. 

Table-IV: ML Estimates of Distribution Parameters 

Distribution Location Shape Scale Threshold 

Normal* 230.77640  234.65877  

3-parameter 
Lognormal 

4.98998  1.10669 -12.63121 

2-parameter 

Exponential 
  232.21869 -1.44235 

3-parameter 
Weibull 

 0.93695 225.23005 -1.02393 

Smallest 

extreme value 
364.61500  352.72600  

Largest 
extreme value 

134.35442  249.40483  

3-parameter 

Gamma 
 0.87858 263.53913 -0.76506 

Logistic 198.63323  120.10248  

3-parameter 

loglogistic 
3.94217  0.76048 -2.05067 

C. Three-Parameter Weibull 

The Weibull distribution is characterised by its shape, scale, 

and threshold parameters, and is also referred to as the 3-

parameter Weibull distribution. A 3-parameter Weibull 

distribution can work with zeros and negative data, but all 

data for a 2-parameter Weibull distribution must be greater 

than zero. From Table 5, the probability function of the 3-

parameter Weibull is given as; 𝑓(𝑇; 𝑘, 𝜆, 𝜃) =

 
𝑘

𝜆
(

𝑇− 𝜃

𝜆
)𝑘−1𝑒−(

𝑇− 𝜃

𝜆
)𝑘

, where for the fitted distribution the 

shape parameter, k=0.920705,  

scale parameter, 𝜆 = 1085.09  

and the threshold 

parameter, 𝜃= -3.52284. 

https://doi.org/10.54105/ijpmh.D1068.05050725
http://www.ijpmh.latticescipub.com/


 

Survival Model of Cervical Cancer Patients using the 3-Parameter Weibull Distribution Model 

                                                  29 

Published By: 

Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijpmh.D106805040525 

DOI: 10.54105/ijpmh.D1068.05050725 

Journal Website: www.ijpmh.latticescipub.com  

Table-V: Three-Parameter Weibull Distribution 

Parameter Estimates 

Parameter Estimate 
Standard 

error 

95% Normal 

Lower CI 

95% Normal 

Upper CI 

Shape 0.920705 0.119488 0.713925 1.18738 

Scale 1085.09 250.384 690.319 1705.61 

Threshold -3.52284 0 -3.52284 -3.52284 

Log-Likelihood = -300.005 

As shown in Table 6, the estimated mean time to failure 

(MTTF) of the 3-parameter distribution is higher, 1124.45 

days, compared to the other distributions fitted for the 

cervical cancer survival data, also with a higher median 

survival time of 725.232 days compared to the different 

distributions 

Table-VI: Characteristics of Distribution 

 Estimate 
Standard 

Error 

95% 

Lower 

95% 

Upper 

Mean (MTTF) 1124.45 314.613 507.820 1741.08 

Standard 

deviation 
1226.40 479.876 569.597 2640.57 

Median 725.232 146.693 437.718 1012.75 

First Quartile 276.876 49.9647 178.847 374.805 

Third quartile 1543.65 406.661 746.605 2340.69 

Interquartile 

range 
1266.77 381.364 702.168 2285.35 

 

As shown in the Figure 7, the hazard plot and survival plot 

for survival time for 3-parameter Weibull, there was a steep 

decrease failure rate as survival time increase before 1000 

days with hazard rate greater than 0.0012 and then gradual 

decrease failure rate above 1000 days, which means that the 

patients had lower survival time. 

 
[Fig.7: Three-Parameter Weibull Hazard and Survival Plot] 

Table-VII: Survival Time Characteristics of Different 

Distributions 

 Mean Median S.E. 

95% confidence interval 

Lower 

bound 

Upper 

bound 

Exponent 205.368 142.351 33.3152 149.434 282.239 

Weibull 206.080 136.071 36.0983 141.059 285.511 

Logistic 182.951 184.320 28.7899 126.524 239.379 

Three-parameter 
Weibull 

1124.45 725.232 314.613 507.82 1741.08 

D. Parametric Regression Models 

The logistic regression obtained for available data for 

cervical cancer patients with minimum log-likelihood and 

AIC, where AIC=-2loglik (MLE) + 2p when W̴ N (0,1), W̴ 

logistic, and W̴ Extreme values. The table below presents the 

coefficients of the AFT logistic regression model, which was 

found to be significantly greater than those of other models. 

The M.L.E. of the scale parameter was 176.243, the intercept 

M.L.E. of 589.560, and the estimated log of the scale 

parameter [Log (scale)] was 5.381. As shown in Table 8, the 

patient’s cancer stage was more significant than the other 

covariates in the model; thus, patients with the latter stages, 

i.e., stages III and IV, had lower survival rates than those with 

the other covariates in the study. 

Table-VIII: AFT Logistic Regression Model Coefficients 

Covariates Coefficients 
Std. 

error 
Z P 

Intercept 475.64698 354.030 1.34 0.17910 

Stage II -11.42700 166.356 -0.07 0.94524 

Stage III -417.10416 156.896 -2.66 0.00785 

Stage IV -609.11332 172.926 -3.52 0.00043 

Menopause 

status category 
127.54061 81.062 1.57 0.11563 

Multiple sexual 
partners 

35.41634 89.929 0.39 0.69371 

Smoking 

history 
59.32155 139.022 0.43 0.66959 

Cancer grade -10.31298 26.547 -0.39 0.69766 

Log(scale) 5.172 0.129 40.08 <2e-16 

Loglik (model) =-297.1, Loglik (intercept) =-316.6, Chisq = 

39.05 with 7 degrees of freedom, p=1.9e-06 

IV. DISCUSSION 

The available data fit well with the three-parameter Weibull 

distribution, and the patient's surviving probability decreases 

significantly. The survival times for non-parametric and 

semi-parametric approaches were similar to those of the 

available data on non-parametric, semi-parametric, and 

parametric models. In contrast, the parametric approach had 

a higher mean survival time. The findings of the study 

showed that the survival of patients was poor and patients 

with the latter cancer stage had an increased risk of death 

compared to those with earlier cancer stage on survival 

probability of patients with cervical cancer was 0.194, 0.166, 

0.0973, and 0.0387 for stage I, II, III and IV. The chance of 

survival for stage IV was lower compared to the other stages, 

I, II, and III. The cancer stage had a significant impact on 

patient survival in the fitted model, surpassing the effect of 

other covariates. Similarly,  

the cancer stage was found to 

have a greater impact on 

patient survival, as indicated 

by the fitted model, 
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compared to the other covariates. The study provides 

essential information for public health decisions and 

policymakers, as well as estimates the patient survival 

probability.  

V. CONCLUSION  

Estimating survival functions for different diseases has 

interested statisticians for several years, and since the survival 

function gives information on the probability of a time-to-

event of interest, which was death caused by cervical cancer 

for this study. Researchers and biostatisticians prefer semi-

parametric models under certain conditions. The parametric 

models provide more precise estimates due to their specific 

conditions; however, they are invalid when the PH 

assumption does not hold or when the survival times of the 

available data do not follow the parametric distribution, as 

shown in this study. Detection of cervical cancer at early 

stages through regular screening programs for women and 

comprehensive treatment should be taken up to improve the 

overall survival of the patients. Improved awareness is 

necessary in controlling cervical cancer, and can be done by 

having health education and regular screening programs 

carried out to create awareness.  
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